SAMS

C++

Primer Plus

Fifth Edition

Stephen Prata

C++

Primer Plus

Fifth Edition

Stephen Prata

SAMS

800 East 96th St., Indianapolis, Indiana, 46240 USA

C++ Primer Plus

Copyright © 2005 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for errors
or omissions. Nor is any liability assumed for damages resulting from the use of the infor-
mation contained herein.

International Standard Book Number: 0-672-32697-3
Library of Congress Catalog Card Number: 2004095067
Printed in the United States of America

First Printing: November, 2004

07 06 05 04 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact
International Sales
1-317-428-3341

international@pearsontechgroup.com

ASSOCIATE PUBLISHER
Michael Stephens

ACQUISITIONS EDITOR
Loretta Yates

DEVELOPMENT EDITOR
Songlin Qiu
MANAGING EDITOR
Charlotte Clapp

PROJECT EDITOR
George E. Nedeff

COPY EDITOR
Kitty Jarrett

INDEXER
Erika Millen

PROOFREADER
Suzanne Thomas

TECHNICAL EDITOR
David Horvath

PUBLISHING
COORDINATOR
Cindy Teeters

MULTIMEDIA DEVELOPER
Dan Scherf

BOOK DESIGNER
Gary Adair

CONTENTS AT A GLANCE

INTRODUCTION

CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER
CHAPTER 10
CHAPTER 11
CHAPTER 12
CHAPTER 13
CHAPTER 14
CHAPTER 15
CHAPTER 16
CHAPTER 17
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G

0 N & U1 A W N =

©

1
Getting Started 11
Setting Out to CH++o 29
Dealingwith Data 65
Compound Types 109
Loops and Relational Expressions 177
Branching Statements and Logical Operators 231
Functions: C++s Programming Modules 279
Adventures in Functions 337
Memory Models and Namespaces 393
Objectsand Classes i 445
Working with Classes 501
Classes and Dynamic Memory Allocation 561
Class Inheritance 633
Reusing Code in C++o 701
Friends, Exceptions, and More 787
The string Class and the Standard Template Library 857
Input, Output, and Files 951
Number Bases 1041
C++Reserved Words 1047
The ASCII Character Set 1051
Operator Precedence 1057
Other Operators 1063
The string Template Class 1075

The STL Methods and Functions 1095

APPENDIX H Selected Readings and Internet Resources

APPENDIX | Converting to ANSI/ISO Standard C++ . .
APPENDIX J Answers to Review Questions

INDEX

TABLE OF CONTENTS

INTRODUCTION 1
CHAPTER 1: Getting Started 11
Learning C++: What Lies Before You 11
The Origins of C++: A Little History 12
The CLanguaget 13

C Programming Philosophy L 13
The C++ Shift: Object-Oriented Programming 14
C++ and Generic Programming 15
The Genesis Of C+ . ..o oo 16
Portability and Standards L 17
The Mechanics of Creating a Program 19
Creating the Source Code File 20
Compilation and Linking 22
SUMMATY . ..o 27
CHAPTER 2: SettingOut to C++o 29
C++ Initiation 29
The main() Function 31
CH+ COMMENLS . ..ot 34
The C++ Preprocessor and the iostreamFile 35
Header Filenames 36
Namespaces 37
C++ Output with cout 38
C++ Source Code Formatting 41
C+ SEABMENLSo 43
Declaration Statements and Variables 43
Assignment Statements 45

A New Trick forcout 46
More Ca+ STAtEMENTSo\ o ittt e e e 47
Using cin ... 47
Concatenating with cout 48
cinand cout: ATouchof Class 48
Functions 50
Using a Function That Has a Return Value 50
Function Variations 54
User-Defined Functions, 55
Using a User-Defined Function That Has a Return Value 58

Placing the using Directive in Multifunction Programs 60

vi C++ PRIMER PLUS, FIFTH EDITION

SUMMATYo 62
Review Questions 63
Programming Exercises 64
CHAPTER 3: DealingwithData 65
Simple Variables 66
Names for Variables 66
Integer Types 68
The short, int, and long Integer Types 68
Unsigned Types oot 73
Choosing an Integer Type i 75
Integer CONSLANLSottt 76
How C++ Decides What Type a ConstantIs 78
The char Type: Characters and Small Integers 79
The bool TyPe . . oo oot 87
The const Qualifier 88
Floating-Point Numbers 89
Writing Floating-Point Numbers 89
Floating-Point Types 91
Floating-Point Constants i .. 93
Advantages and Disadvantages of Floating-Point Numbers 94
Ct++ Arithmetic Operators it 95
Order of Operation: Operator Precedence and Associativity 96
Division Diversions 97
The Modulus Operator 99
Type Conversions 100
SUMIMATY . . oottt e 105
Review QUESHIONS 106
Programming ExXercises 107
CHAPTER 4: Compound Typesottt 109
Introducing AITays 110
Program Notes 112
Initialization Rules for Arrays L. 113
SIINES . oo 114
Concatenating String Constantsuiiiea... 116
Using Strings in an ATrayt 116
Adventures in String Input 118
Reading String Input a Lineata Time 119

Mixing String and Numeric Input 124

CONTENTS vii

Introducing the string Class 125
Assignment, Concatenation, and Appending 126
More string Class Operations 127
More on string Class /O 129

Introducing StrUCtUresot 131
Using a Structure ina Program 133
Can a Structure Use a string Class Member? 135
Other Structure Properties i 136
Arrays of Structures 137
Bit Fields in Structures 139

Unions 139

Enumerations 141
Setting Enumerator Values 142
Value Ranges for Enumerations 143

Pointers and the Free Store 144
Declaring and Initializing Pointers 147
Pointer Danger 149
Pointers and Numbers 150
Allocating Memory withnew 150
Freeing Memory with delete 152
Using new to Create Dynamic Arrays 153

Pointers, Arrays, and Pointer Arithmetic 156
Program Notes 157
Pointers and Strings 162
Using new to Create Dynamic Structures 166
Automatic Storage, Static Storage, and Dynamic Storage 170

SUMMATY . ..ot 172

Review Questions 173

Programming Exercises 174

CHAPTER 5: Loops and Relational Expressions 177

Introducing for Loops 178
forLoop Parts 179
Backtothe forLoop 185
Changing the Step Size 187
Inside Strings with the for Loop 188
The Increment (++) and Decrement (--) Operators 189
Side Effects and Sequence Points 190
Prefixing Versus Postfixing 191
The Increment/Decrement Operators and Pointers 191

Combination Assignment OPerators 192

viii

C++ PRIMER PLUS, FIFTH EDITION

Compound Statements, or Blocks o 193
The Comma Operator (or More Syntax Tricks) 195
Relational Expressions i 198
A Mistake You'll Probably Make, 199
Comparing C-Style Strings 201
Comparing string Class Strings 204
The while Loopo 205
Program Notes 207
for Versuswhile 207
Just a Moment—-Building a Time-Delay Loop 209
The do While LOODot 211
Loopsand Text Input 213
Using Unadorned cinforInput 214
cin.get(char) tothe Rescue, 215
Which cin.get()? 216
The End-of-File Condition 217
Yet Another Version of cin.get() 220
Nested Loops and Two-Dimensional Arrays 223
Initializing a Two-Dimensional Array 225
SUMMATY . ..o 227
Review Questions 228
Programming Exercises 229
CHAPTER 6: Branching Statements and Logical Operators 231
The if Statemento 231
The if else Statemento..iiuiinnenaanoo .. 233
Formatting if else Statements 235
The if else if else Construction 236
Logical EXPressions 238
The Logical OR Operator: || 238
The Logical AND Operator: && 239
The Logical NOT Operator: |, 244
Logical Operator Facts 246
Alternative Representations 247
The cctype Library of Character Functions, 247
The 2 OPeratoro 250
The switch Statement 251
Using Enumerators as Labels 255
switchand if else i 256
The break and continue Statements 256

Program Notes 258

CONTENTS ix

Number-Reading Loopso 259
Program Notes 262
Simple File Input/Output 202
Text /Oand Text Files 263
Writingtoa Text File 2064
Reading froma Text File 268
SUMMATY . ..o 273
Review QUESHIONS 274
Programming Exercises 276
CHAPTER 7: Functions: C++5 Programming Modules 279
Function Review 280
Defininga Function 281
Prototyping and Calling a Function 283
Function Arguments and Passing by Value, 286
Multiple ArgUments 288
Another Two-Argument Function 290
Functions and Atrays 293
How Pointers Enable Array-Processing Functions 294
The Implications of Using Arrays as Arguments 295
More Array Function Examples, 297
Functions Using Array Ranges 303
Pointersand const 305
Functions and Two-Dimensional Arrays 308
Functions and C-Style Strings 309
Functions with C-Style String Arguments 310
Functions That Return C-Style Strings 312
Functions and Structures 313
Passing and Returning Structures 314
Another Example of Using Functions with Structures 316
Passing Structure Addresses 320
Functions and string Class Objects 322
Recursion 324
Recursion with a Single Recursive Call 324
Recursion with Multiple Recursive Calls 326
Pointers to Functions 327
Function Pointer Basics Lo 328

A Function Pointer Example L 330
SUMMATY . ..ot 332
Review QUESHIONS 333

Programming Exercises 334

X

C++ PRIMER PLUS, FIFTH EDITION

CHAPTER 8: Adventuresin Functions 337
C++ Inline Functions 337
Reference Variables 340

Creating a Reference Variable 341
References as Function Parameters 344
Reference Properties and Oddities 347
Using References with a Structure 351
Using References with a Class Object 355
Another Object Lesson: Objects, Inheritance, and References 358
When to Use Reference Arguments 361
Default Arguments 362
Program Notes 364
Function Overloading 365
An Overloading Example 367
When to Use Function Overloading 370
Function Templates 370
Overloaded Templates, 374
Explicit Specializations 376
Instantiations and Specializations 380
Which Function Version Does the Compiler Pick? 382
SUMMATY . ..ot 388
Review Questions 389
Programming Exercises 390

CHAPTER 9: Memory Models and Namespaces 393
Separate Compilation 393
Storage Duration, Scope, and Linkage 399

Scopeand Linkage 399
Automatic Storage Duration 400
Static Duration Variables L L 406
Specifiers and Qualifiers L 415
Functions and Linkage 418
Language Linking 419
Storage Schemes and Dynamic Allocation 419
The Placement new OPerator, 420
Program Notes 423
Namespaces 424
Traditional C++ Namespacest 424
New Namespace Featuresttt 426
A Namespace Example 433
Namespaces and the Future 437

SUMMATY . ..o 437

CONTENTS xi

Review QUeSHIONS 438
Programming Exercises 441
CHAPTER 10: Objectsand Classes 445
Procedural and Object-Oriented Programming 446
Abstraction and Classes 447
WhatIsaType? 447
Classes in CH+ oo 448
Implementing Class Member Functions 453
Using Classes 458
Reviewing Our StorytoDate 462
Class Constructors and Destructorso.oo.... 463
Declaring and Defining Constructors 464
Using COnStruCtorst 465
Default ConstruCtorsot 466
DESITUCIOTSottt 467
Improving the Stock Class 468
Constructors and Destructors in Review 475
Knowing Your Objects: The this Pointer 477
An Array of Objects 483
The Interface and Implementation Revisited 486
Class SCOPE . . .ot 487
Class Scope CONSLANTSottt 488
Abstract Data Types 489
SUMMATY . ..ot 495
Review QUESHIONS 496
Programming Exercises 496
CHAPTER 11: Workingwith Classes 501
Operator Overloading 502
Time on Our Hands: Developing an Operator Overloading Example 503
Adding an Addition Operator 506
Overloading Restrictions i 510
More Overloaded Operatorso .. 512
Introducing Friends 515
Creating Friends 516

A Common Kind of Friend: Overloading the << Operator 518
Overloaded Operators: Member Versus Nonmember Functions 524
More Overloading: A Vector Class 525
Using a State Member 533
Overloading Arithmetic Operators for the Vector Class 535
An Implementation Comment 537

Taking the Vector Class ona Random Walk 538

xii

C++ PRIMER PLUS, FIFTH EDITION

Automatic Conversions and Type Casts for Classes 541
Program Notes 547
Conversion Functions 547
Conversions and Friends 553

SUMIMATY . . oottt e 556

Review QUESHIONS 558

Programming Exercises 558

CHAPTER 12: Classes and Dynamic Memory Allocation 561

Dynamic Memory and Classes i 562
A Review Example and Static Class Members 562
Implicit Member Functions 571
The New, Improved String Class 579
Things to Remember When Using new in Constructors 590
Observations About Returning Objects 593
Using Pointers to Objects i 596
Reviewing Techniques 606

A Queue Simulation 607
AQueue Class 608
The Customer Class 618
The Simulation 621

SUMMATY . ..o 626

Review QUeSHIONS 627

Programming Exercises 629

CHAPTER 13: Class Inheritance 633

Beginning with a Simple Base Class 634
Derivinga Class 636
Constructors: Access Considerations 638
Using a Derived Class 641
Special Relationships Between Derived and Base Classes 643

Inheritance: An Is-a Relationship 645

Polymorphic Public Inheritance 647
Developing the Brass and BrassPlus Classes 648
Static and Dynamic Binding o L. 660
Pointer and Reference Type Compatibility 660
Virtual Member Functions and Dynamic Binding 662
Things to Know About Virtual Methods 664

Access Control: protected 668

Abstract Base Classes 670
Applying the ABC Conceptt ... 672

ABC Philosophy 677

CONTENTS

Inheritance and Dynamic Memory Allocation 677
Case 1: Derived Class Doesnt Use new 677
Case 2: Derived Class Does Use new 679
An Inheritance Example with Dynamic Memory Allocation and

Friends 681

Class Design Review i 685
Member Functions That the Compiler Generates for You 686
Other Class Method Considerations 687
Public Inheritance Considerations 691
Class Function SUMmMaryiuiininannan oo, 695

SUMMATY .« . oot e 696

Review QUESHIONS 697

Programming Exercises 698

CHAPTER 14: ReusingCode in C+ot 701

Classes with Object Members 701
The valarray Class: A Quick Look 702
The student Class Design 703
The student Class Example 705

Private Inheritance 712
The student Class Example (New Version) 713

Multiple Inheritance 723
How Many Workers? 728
Which Method? 732
MISYNOPpsis 743

Class Templates 744
Defining a Class Template 744
Using a Template Class i 748
A Closer Look at the Template Class 750
An Array Template Example and Non-Type Arguments 756
Template Versatility 758
Template Specializations 762
Member Templates 765
Templates as Parameters i 768
Template Classes and Friends 770

SUMMATY . ..o 777

Review QUeSHiONS 779

Programming Exercises 781

xiii

xiv. C++ PRIMER PLUS, FIFTH EDITION

CHAPTER 15: Friends, Exceptions, and More 787
Friends 787
Friend Classes 788
Friend Member Functions 793
Other Friendly Relationships 796
Nested Classes 798
Nested Classes and ACCess 800
Nestingina Template 801
Exceptions 805
Calling abort ()o 805
Returning an Error Code 807
The Exception Mechanism 808
Using Objects as EXceptions 812
Unwinding the Stack 816
More Exception Features 822
The exception Class 824
Exceptions, Classes, and Inheritance 829
When Exceptions GO AStrayttt 834
Exception Cautions 837
RI T 839
What Is RTTI For? e 840
How Does RITI Work? e 840
Type Cast OPeratorsot 848
SUMMATY . ..o 852
Review QUeSHIONS 853
Programming Exercises 854
CHAPTER 16: The string Class and the Standard Template Library 857
The string Class 857
Constructing a String 858
string Class Input 862
Working with Strings 864
What Else Does the string Class Offer? 870
The auto_ptr Class 873
Using auto_ptr 874
auto_ptr Considerations 876
The STL . . oo 877
The vector Template Class 878
Things to Do to VeCtOTS oot 880

More Things to Do to Vectorst .. 885

CONTENTS xv

Generic Programming 890
Why [terators? 890
Kinds of Tterators 894
Iterator Hierarchy 897
Concepts, Refinements, and Models 898
Kinds of Containers 905
Associative Containers 915

Function Objects (aka Functors), 922
Functor COnCeptsot 923
Predefined Functors 926
Adaptable Functors and Function Adapters 928

Algorithms 930
Algorithm Groups 931
General Properties of Algorithms 932
The STL and the string Class 933
Functions Versus Container Methods 934
Using the STL 936

Other Libraries 940
vector and valarray 940

SUMMATY . ..o 946

Review Questions 948

Programming Exercises 949

CHAPTER 17: Input, Output,and Files 951

An Overview of C++ Inputand Output 952
Streams and Buffers 952
Streams, Bulffers, and the iostream File 955
Redirection 957

Output with cout 958
The Overloaded << Operator 958
The Other ostream Methods 961
Flushing the Output Buffer 964
Formatting with cout 965

Input with cin 983
How cin >>ViewsInput 985
Stream States 087
Other istream Class Methods 991
Other istream Methods 999

File Input and Output 1003
Simple File /O o 1004
Stream Checking and is_open(), 1007

Opening Multiple Files 1008

xvi

C++ PRIMER PLUS, FIFTH EDITION

Command-Line Processing 1008

File Modes 1011
RanNdom ACCESSot 1021

Incore Formatting 1030
What NOW? ..o 1032
SUMMATY . ..o 1033
Review QUeSIONS 1034
Programming Exercises 1036
APPENDIX A: NumberBases 1041
Decimal Numbers (Base 10)o 1041
Octal Integers (Base 8)ot 1041
Hexadecimal Numbers (Base 16) 1042
Binary Numbers (Base 2) 1043
Binaryand Hex 1043
APPENDIX B: C++Reserved Words 1047
C+ Keywordso 1047
Alternative Tokens 1048

C++ Library Reserved Names i, 1048
APPENDIX C: The ASCII Character Set 1051
APPENDIX D: Operator Precedence 1057
APPENDIX E: Other Operatorso.uiiuitin 1063
Bitwise Operators i 1063

The Shift Operators 1063

The Logical Bitwise Operators 1065
Alternative Representations of Bitwise Operators 1067

A Few Common Bitwise Operator Techniques 1068
Member Dereferencing Operatorsouooo... 1070
APPENDIX F: The string Template Class 1075
Thirteen Typesand a Constant 1076

Data Information, Constructors, and Oddsand Ends 1077
Default Constructors 1079
Constructors That Use Arrays 1079
Constructors That Use Part of an Array 1080

Copy CONSIIUCIOLS . .\ oottt e e e e e e e 1080
Constructors That Use n Copies of a Character 1081
Constructors That UseaRange 1082
Memory Miscellany 1082

SHING ACCESS .« . o oot 1083

Basic Assignment 1084

CONTENTS xvii

String Searching 1084
The find() Family 1084
The rfind() Family 1085
The find_first_of() Family 1086
The find_last_of() Family 1086
The find_first_not_of() Family 1087
The find_last_not_of() Family 1087

Comparison Methods and Functions 1088

String Modifiers 1089
Methods for Appending and Adding 1089
More Assignment Methods 1090
Insertion Methods 1091
Erase Methods 1091
Replacement Methods 1092
Other Modifying Methods: copy () and swap() 1093

Output and Input 1093

APPENDIX G: The STL Methods and Functions 1095

Members Common to All Containers. 1095

Additional Members for Vectors, Lists, and Deques 1098

Additional Members for Setsand Maps 1101

STLFUNCHONS 1102
Nonmodifying Sequence Operations 1103
Mutating Sequence Operations 1107
Sorting and Related Operations 1115
Numeric Operations, 1126

APPENDIX H: Selected Readings and Internet Resources 1129
Selected Readings 1129
Internet Resources L 1131

APPENDIX I: Converting to ANSI/ISO Standard C++ 1133

Use Alternatives for Some Preprocessor Directives 1133
Use const Instead of #define to Define Constants 1133
Use inline Instead of #define to Define Short Functions 1135

Use Function Prototypes, 1136

Use Type Castso 1136

Become Familiar with C++ Features 1137

Use the New Header Organization 1137

Use Namespacest 1137

Use the autoptr Template 1138

Use the string Class 1139

Use the STL 1139

APPENDIX J: Answers to the Review Questions 1141

Answers to Review Questions for Chapter2 1141
Answers to Review Questions for Chapter 3 1142
Answers to Review Questions for Chapter4 1143
Answers to Review Questions for Chapter 5 1144
Answers to Review Questions for Chapter 6 1145
Answers to Review Questions for Chapter 7 1147
Answers to Review Questions for Chapter 8 1148
Answers to Review Questions for Chapter9 1150
Answers to Review Questions for Chapter 10 1151
Answers to Review Questions for Chapter 11 1154
Answers to Review Questions for Chapter 12 1155
Answers to Review Questions for Chapter 13 1157
Answers to Review Questions for Chapter 14 1159
Answers to Review Questions for Chapter 15 1160
Answers to Review Questions for Chapter 16 1161
Answers to Review Questions for Chapter 17 1162

ABOUT THE AUTHOR

Stephen Prata teaches astronomy, physics, and computer science at the College of Marin in
Kentfield, California. He received his B.S. from the California Institute of Technology and his
Ph.D. from the University of California, Berkeley. Stephen has authored or coauthored more
than a dozen books for The Waite Group. He wrote The Waite Group’s New C Primer Plus,
which received the Computer Press Association’s 1990 Best How-to Computer Book Award,
and The Waite Group’s C++ Primer Plus, nominated for the Computer Press Association’s Best
How-to Computer Book Award in 1991.

DEDICATION

To my colleagues and students at the College of Marin, with whom it is a pleasure
to work.

—Stephen Prata

ACKNOWLEDGMENTS

Acknowledgments for the Fifth Edition

I'd like to thank Loretta Yates and Songlin Qiu of Sams Publishing for guiding and managing
this project. Thanks to my colleague Fred Schmitt for several useful suggestions. Once again,
I'd like to thank Ron Liechty of Metrowerks for his helpfulness.

Acknowledgments for the Fourth Edition

Several editors from Pearson and from Sams helped originate and maintain this project; thanks
to Linda Sharp, Karen Wachs, and Laurie McGuire. Thanks, too, to Michael Maddox, Bill
Craun, Chris Maunder, and Phillipe Bruno for providing technical review and editing. And
thanks again to Michael Maddox and Bill Craun for supplying the material for the Real World
Notes. Finally, I'd like to thank Ron Liechty of Metrowerks and Greg Comeau of Comeau
Computing for their aid with C++ compilers.

Acknowledgments for the Third Edition

I'd like to thank the editors from Macmillan and The Waite Group for the roles they played in
putting this book together: Tracy Dunkelberger, Susan Walton, and Andrea Rosenberg.
Thanks, too, to Russ Jacobs for his content and technical editing. From Metrowerks, I'd like to
thank Dave Mark, Alex Harper, and especially Ron Liechty, for their help and cooperation.

Acknowledgments for the Second Edition

I'd like to thank Mitchell Waite and Scott Calamar for supporting a second edition and Joel
Fugazzotto and Joanne Miller for guiding the project to completion. Thanks to Michael
Marcotty of Metrowerks for dealing with my questions about their beta version CodeWarrior
compiler. I'd also like to thank the following instructors for taking the time to give us feedback
on the first edition: Jeff Buckwalter, Earl Brynner, Mike Holland, Andy Yao, Larry Sanders,

Shahin Momtazi, and Don Stephens. Finally, I wish to thank Heidi Brumbaugh for her helpful
content editing of new and revised material.

Acknowledgments for the First Edition

Many people have contributed to this book. In particular, I wish to thank Mitch Waite for his
work in developing, shaping, and reshaping this book, and for reviewing the manuscript. 1
appreciate Harry Henderson’s work in reviewing the last few chapters and in testing programs
with the Zortech C++ compiler. Thanks to David Gerrold for reviewing the entire manuscript
and for championing the needs of less-experienced readers. Also thanks to Hank Shiffman for
testing programs using Sun C++ and to Kent Williams for testing programs with AT&T cfront
and with G++. Thanks to Nan Borreson of Borland International for her responsive and cheer-
ful assistance with Turbo C++ and Borland C++. Thank you, Ruth Myers and Christine Bush,
for handling the relentless paper flow involved with this kind of project. Finally, thanks to
Scott Calamar for keeping everything on track.

WE WANT TO HEAR FROM YOU!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an associate publisher for Sams Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as what
we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do have
a User Services group, however, where I will forward specific technical questions related to the book.

When you write, please be sure to include this book’s title and author as well as your name,
email address, and phone number. I will carefully review your comments and share them with
the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: ~ Michael Stephens
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our web site at
www . samspublishing.com. Type the ISBN (0672326973) or the title of a book in the Search
field to find the page you're looking for.

INTRODUCTION

Preface to the Fifth Edition

Learning C++ is an adventure of discovery, particularly because the language accommodates
several programming paradigms, including object-oriented programming, generic program-
ming, and the traditional procedural programming. C++ was a moving target as the language
added new features, but now, with the ISO/ANSI C++ Standard, Second Edition (2003), in
place, the language has stabilized. Contemporary compilers support most or all of the features
mandated by the standard, and programmers have had time to get used to applying these fea-
tures. The fifth edition of this book, C++ Primer Plus, reflects the ISO/ANSI standard and
describes this matured version of C++.

C++ Primer Plus discusses the basic C language and presents C++ features, making this book
self-contained. It presents C++ fundamentals and illustrates them with short, to-the-point pro-
grams that are easy to copy and experiment with. You'll learn about input/output (I/O), how to
make programs perform repetitive tasks and make choices, the many ways to handle data, and
how to use functions. You'll learn about the many features C++ has added to C, including the
following;

* Classes and objects

¢ Inheritance

 Polymorphism, virtual functions, and runtime type identification (RTTI)
» Function overloading

 Reference variables

* Generic, or type-independent, programming, as provided by templates and the Standard
Template Library (STL)

¢ The exception mechanism for handling error conditions

* Namespaces for managing names of functions, classes, and variables

The Primer Approach

C++ Primer Plus brings several virtues to the task of presenting all this material. It builds on
the primer tradition begun by C Primer Plus nearly two decades ago and embraces its success-
ful philosophy:

2 C++ PRIMER PLUS, FIFTH EDITION

o A primer should be an easy-to-use, friendly guide.

o A primer doesn’t assume that you are already familiar with all relevant programming
concepts.

A primer emphasizes hands-on learning with brief, easily typed examples that develop
your understanding, a concept or two at a time.

A primer clarifies concepts with illustrations.

* A primer provides questions and exercises to let you test your understanding, making
the book suitable for self-learning or for the classroom.

Following these principles, the book helps you understand this rich language and how to use
it. For example:

o It provides conceptual guidance about when to use particular features, such as using
public inheritance to model what are known as is-a relationships.

o It illustrates common C++ programming idioms and techniques.

o It provides a variety of sidebars, including tips, cautions, things to remember, compati-
bility notes, and real-world notes.

The author and editors of this book do our best to keep the presentation to-the-point, simple,
and fun. Our goal is that by the end of the book, you'll be able to write solid, effective pro-
grams and enjoy yourself doing so.

Sample Code Used in This Book

This book provides an abundance of sample code, most of it in the form of complete pro-
grams. Like the previous editions, this book practices generic C++ so that it is not tied to any
particular kind of computer, operating system, or compiler. Thus, the examples were tested on
a Windows XP system, a Macintosh OS X system, and a Linux system. Only a few programs
were affected by compiler non-conformance issues. Compiler compliance with the C++ stan-
dard has improved since the previous edition of this book first appeared.

The sample code for the complete programs described in this book is available on the Sams
website, at www. samspublishing.com. Enter this book’s ISBN (without the hyphens) in the
Search box and click Search. When the books title is displayed, click the title to go to a page
where you can download the code. You also can find solutions to selected programming exer-
cises at this site.

How This Book Is Organized

This book is divided into 17 chapters and 10 appendixes, summarized here.

INTRODUCTION

Chapter 1: Getting Started

Chapter 1 relates how Bjarne Stroustrup created the C++ programming language by adding
object-oriented programming support to the C language. You'll learn the distinctions between
procedural languages, such as C, and object-oriented languages, such as C++. You'll read about
the joint ANSI/ISO work to develop a C++ standard. This chapter discusses the mechanics of
creating a C++ program, outlining the approach for several current C++ compilers. Finally, it
describes the conventions used in this book.

Chapter 2: Setting Out to C++

Chapter 2 guides you through the process of creating simple C++ programs. You'll learn about
the role of the main() function and about some of the kinds of statements that C++ programs
use. You'll use the predefined cout and cin objects for program output and input, and you'll
learn about creating and using variables. Finally, you'll be introduced to functions, C++% pro-
gramming modules.

Chapter 3: Dealing with Data

C++ provides built-in types for storing two kinds of data: integers (numbers with no fractional
parts) and floating-point numbers (numbers with fractional parts). To meet the diverse
requirements of programmers, C++ offers several types in each category. Chapter 3 discusses
those types, including creating variables and writing constants of various types. You'll also
learn how C++ handles implicit and explicit conversions from one type to another.

Chapter 4: Compound Types

C++ lets you construct more elaborate types from the basic built-in types. The most advanced
form is the class, discussed in Chapters 9 through 13. Chapter 4 discusses other forms, includ-
ing arrays, which hold several values of a single type; structures, which hold several values of
unlike types; and pointers, which identify locations in memory. You'll also learn how to create
and store text strings and to handle text I/O by using C-style character arrays and the C++
string class. Finally, you'll learn some of the ways C++ handles memory allocation, including
using the new and delete operators for managing memory explicitly.

Chapter 5: Loops and Relational Expressions

Programs often must perform repetitive actions, and C++ provides three looping structures for
that purpose: the for loop, the while loop, and the do while loop. Such loops must know
when they should terminate, and the C++ relational operators enable you to create tests to
guide such loops. In Chapter 5 you learn how to create loops that read and process input
character-by-character. Finally, you'll learn how to create two-dimensional arrays and how to
use nested loops to process them.

4

C++ PRIMER PLUS, FIFTH EDITION

Chapter 6: Branching Statements and Logical
Operators

Programs can behave intelligently if they can tailor their behavior to circumstances. In Chapter
6 you'll learn how to control program flow by using the if, if else, and switch statements
and the conditional operator. You'll learn how to use logical operators to help express deci-
sion-making tests. Also, you'll meet the cctype library of functions for evaluating character
relations, such as testing whether a character is a digit or a nonprinting character. Finally,
you'll get an introductory view of file I/O.

Chapter 7: Functions: C++’s Programming Modules

Functions are the basic building blocks of C++ programming. Chapter 7 concentrates on fea-
tures that C++ functions share with C functions. In particular, you'll review the general format
of a function definition and examine how function prototypes increase the reliability of pro-
grams. Also, you'll investigate how to write functions to process arrays, character strings, and
structures. Next, you'll learn about recursion, which is when a function calls itself, and see
how it can be used to implement a divide-and-conquer strategy. Finally, you'll meet pointers to
functions, which enable you to use a function argument to tell one function to use a second
function.

Chapter 8: Adventures in Functions

Chapter 8 explores the new features C++ adds to functions. You'll learn about inline functions,
which can speed program execution at the cost of additional program size. You'll work with
reference variables, which provide an alternative way to pass information to functions. Default
arguments let a function automatically supply values for function arguments that you omit
from a function call. Function overloading lets you create functions having the same name but
taking different argument lists. All these features have frequent use in class design. Also, you'll
learn about function templates, which allow you to specify the design of a family of related
functions.

Chapter 9: Memory Models and Namespaces

Chapter 9 discusses putting together multifile programs. It examines the choices in allocating
memory, looking at different methods of managing memory and at scope, linkage, and name-
spaces, which determine what parts of a program know about a variable.

Chapter 10: Objects and Classes

A class is a user-defined type, and an object (such as a variable) is an instance of a class.
Chapter 10 introduces you to object-oriented programming and to class design. A class decla-
ration describes the information stored in a class object and also the operations (class meth-
ods) allowed for class objects. Some parts of an object are visible to the outside world (the
public portion), and some are hidden (the private portion). Special class methods (construc-
tors and destructors) come into play when objects are created and destroyed. You will learn

INTRODUCTION

about all this and other class details in this chapter, and you'll see how classes can be used to
implement ADTs, such as a stack.

Chapter 11: Working with Classes

In Chapter 11 you'll further your understanding of classes. First, you'll learn about operator
overloading, which lets you define how operators such as + will work with class objects. You'll
learn about friend functions, which can access class data that’s inaccessible to the world at
large. You'll see how certain constructors and overloaded operator member functions can be
used to manage conversion to and from class types.

Chapter 12: Classes and Dynamic Memory Allocation

Often it’s useful to have a class member point to dynamically allocated memory. If you use new
in a class constructor to allocate dynamic memory, you incur the responsibilities of providing
an appropriate destructor, of defining an explicit copy constructor, and of defining an explicit
assignment operator. Chapter 12 shows you how and discusses the behavior of the member
functions generated implicitly if you fail to provide explicit definitions. You'll also expand your
experience with classes by using pointers to objects and studying a queue simulation problem.

Chapter 13: Class Inheritance

One of the most powerful features of object-oriented programming is inheritance, by which a
derived class inherits the features of a base class, enabling you to reuse the base class code.
Chapter 13 discusses public inheritance, which models is-a relationships, meaning that a
derived object is a special case of a base object. For example, a physicist is a special case of a
scientist. Some inheritance relationships are polymorphic, meaning you can write code using a
mixture of related classes for which the same method name may invoke behavior that depends
on the object type. Implementing this kind of behavior necessitates using a new kind of mem-
ber function called a virtual function. Sometimes using abstract base classes is the best
approach to inheritance relationships. This chapter discusses these matters, pointing out when
public inheritance is appropriate and when it is not.

Chapter 14: Reusing Code in C++

Public inheritance is just one way to reuse code. Chapter 14 looks at several other ways.
Containment is when one class contains members that are objects of another class. It can be
used to model has-a relationships, in which one class has components of another class. For
example, an automobile has a motor. You also can use private and protected inheritance to
model such relationships. This chapter shows you how and points out the differences among
the different approaches. Also, you'll learn about class templates, which let you define a class
in terms of some unspecified generic type, and then use the template to create specific classes
in terms of specific types. For example, a stack template enables you to create a stack of inte-
gers or a stack of strings. Finally, you'll learn about multiple public inheritance, whereby a
class can derive from more than one class.

6

C++ PRIMER PLUS, FIFTH EDITION

Chapter 15: Friends, Exceptions, and More

Chapter 15 extends the discussion of friends to include friend classes and friend member func-
tions. Then it presents several new developments in C++, beginning with exceptions, which
provide a mechanism for dealing with unusual program occurrences, such an inappropriate
function argument values and running out of memory. Then you'll learn about RTTI, a mecha-
nism for identifying object types. Finally, you'll learn about the safer alternatives to unre-
stricted typecasting.

Chapter 16: The string Class and the Standard
Template Library

Chapter 16 discusses some useful class libraries recently added to the language. The string
class is a convenient and powerful alternative to traditional C-style strings. The auto_ptr class
helps manage dynamically allocated memory. The STL provides several generic containers,
including template representations of arrays, queues, lists, sets, and maps. It also provides an
efficient library of generic algorithms that can be used with STL containers and also with ordi-
nary arrays. The valarray template class provides support for numeric arrays.

Chapter 17: Input, Output, and Files

Chapter 17 reviews C++ I/O and discusses how to format output. You'll learn how to use class
methods to determine the state of an input or output stream and to see, for example, whether
there has been a type mismatch on input or whether the end-of-file has been detected. C++
uses inheritance to derive classes for managing file input and output. You'll learn how to open
files for input and output, how to append data to a file, how to use binary files, and how to get
random access to a file. Finally, you'll learn how to apply standard I/O methods to read from
and write to strings.

Appendix A: Number Bases

Appendix A discusses octal, hexadecimal, and binary numbers.

Appendix B: C++ Reserved Words

Appendix B lists C++ keywords.

Appendix C: The ASCII Character Set

Appendix C lists the ASCII character set, along with decimal, octal, hexadecimal, and binary
representations.

Appendix D: Operator Precedence

Appendix D lists the C++ operators in order of decreasing precedence.

INTRODUCTION

Appendix E: Other Operators

Appendix E summarizes the C++ operators, such as the bitwise operators, not covered in the
main body of the text.

Appendix F: The string Template Class

Appendix F summarizes string class methods and functions.

Appendix G: The STL Methods and Functions

Appendix G summarizes the STL container methods and the general STL algorithm functions.

Appendix H: Selected Readings and Internet Resources

Appendix H lists some books that can further your understanding of C++.

Appendix I: Converting to ANSI/ISO Standard C++

Appendix [provides guidelines for moving from C and older C++ implementations to
ANSI/ISO Ci+.

Appendix J: Answers to Review Questions

Appendix J contains the answers to the review questions posed at the end of each chapter.

Note to Instructors

One of the goals of this edition of C++ Primer Plus is to provide a book that can be used as
either a teach-yourself book or as a textbook. Here are some of the features that support using
C++ Primer Plus, Fifth Edition, as a textbook:

* This book describes generic C++, so it isnt dependent on a particular implementation.

e The contents track the ISO/ANSI C++ standards committee’s work and include discus-
sions of templates, the STL, the string class, exceptions, RTTI, and namespaces.

* It doesn’t assume prior knowledge of C, so it can be used without a C prerequisite.
(Some programming background is desirable, however.)

* Topics are arranged so that the early chapters can be covered rapidly as review chapters
for courses that do have a C prerequisite.

 Chapters include review questions and programming exercises. Appendix] provides the
answers to the review questions. Solutions to selected programming exercises can be
found at the Sams website (www.samspublishing.com).

8

C++ PRIMER PLUS, FIFTH EDITION

* The book introduces several topics that are appropriate for computer science courses,
including abstract data types (ADTs), stacks, queues, simple lists, simulations, generic
programming, and using recursion to implement a divide-and-conquer strategy.

* Most chapters are short enough to cover in a week or less.

* The book discusses when to use certain features as well as how to use them. For exam-
ple, it links public inheritance to is-a relationships and composition and private inheri-
tance to has-a relationships, and it discusses when to use virtual functions and when
not to.

Conventions Used in This Book

This book uses several typographic conventions to distinguish among various kinds of text:

* Code lines, commands, statements, variables, filenames, and program output appear in a
computer typeface:
#include <iostream>
int main()

{

using namespace std;
cout << "What's up, Doc!\n";
return 0;

}
e Program input that you should type appears in bold computer typeface:

Please enter your name:
Plato

 Placeholders in syntax descriptions appear in an italic computer typeface. You
should replace a placeholder with the actual filename, parameter, or whatever element it
represents.

o [talic type is used for new terms.

This book includes several elements intended to illuminate specific points:

g Compatibility Note

Most compilers are not yet 100% compliant with the ISO/ANSI Standard, and these notes warn you
of discrepancies you may encounter.

Remember

These notes highlight points that are important to remember.

INTRODUCTION

=)
Ul Real-World Note

Several professional programmers offer observations based on their experiences.

Sidebar

A sidebar provides a deeper discussion or additional background to help illuminate a topic.

Tip

Tips present short, helpful guides to particular programming situations.

-

<Yy .
é Caution
—r

A caution alerts you to potential pitfalls.

ﬁ Note

The notes provide a catch-all category for comments that don‘t fall into one of the other categories.

Systems Used to Develop This Book’s
Programming Examples

For the record, the examples in this book were developed using Microsoft Visual C++ 7.1 (the
version that comes with Microsoft Visual Studio .NET 2003) and Metrowerks CodeWarrior
Development Studio 9 on a Pentium PC with a hard disk and running under Windows XP
Professional. Most programs were checked using the Borland C++ 5.5 command-line compiler
and GNU gpp 3.3.3 on the same system, using Comeau 4.3.3 and GNU g++ 3.3.1 on an IBM-
compatible Pentium running SuSE 9.0 Linux, and using Metrowerks Development Studio 9 on
a Macintosh G4 under OS 10.3. This book reports discrepancies stemming from lagging
behind the standard generically, as in “older implementations use ios: :fixed instead of
ios_base: :fixed.” This book reports some bugs and idiosyncrasies in older compilers that
would prove troublesome or confusing; most of these have been fixed in current releases.

C++ offers a lot to the programmer; learn and enjoy!

CHAPTER 1

GETTING STARTED

In this chapter you’ll learn about the following:

¢ The history and philosophy of C e How C++ adds generic program-
and of C++ ming concepts to the C language
e Procedural versus object-oriented e Programming language standards

programming e The mechanics of creating a pro-

e How C++ adds object-oriented gram
concepts to the C language

elcome to C++! This exciting language, which blends the C language with support for

object-oriented programming, became one of the most important programming lan-

guages of the 1990s and continues strongly into the 2000s. Its C ancestry brings to
C++ the tradition of an efficient, compact, fast, and portable language. Its object-oriented her-
itage brings C++ a fresh programming methodology, designed to cope with the escalating com-
plexity of modern programming tasks. Its template features bring yet another new
programming methodology: generic programming. This triple heritage is both a blessing and a
bane. It makes the language very powerful, but it also means there’s a lot to learn.

This chapter explores C++s background further and then goes over some of the ground rules
for creating C++ programs. The rest of the book teaches you to use the C++ language, going
from the modest basics of the language to the glory of object-oriented programming (OOP)
and its supporting cast of new jargon—objects, classes, encapsulation, data hiding, polymor-
phism, and inheritance—and then on to its support of generic programming. (Of course, as
you learn C++, these terms will be transformed from buzzwords to the necessary vocabulary of
cultivated discourse.)

Learning C++: What Lies Before You

C++ joins three separate programming traditions: the procedural language tradition, repre-
sented by C; the object-oriented language tradition, represented by the class enhancements
C++ adds to C; and generic programming, supported by C++ templates. This chapter looks

12

C++ PRIMER PLUS, FIFTH EDITION

into those traditions. But first, let’s consider what this heritage implies about learning C++.
One reason to use C++ is to avail yourself of its object-oriented features. To do so, you need a
sound background in standard C, for that language provides the basic types, operators, control
structures, and syntax rules. So if you already know C, you're poised to learn C++. But it’s not
just a matter of learning a few more keywords and constructs. Going from C to C++ involves
about as much work as learning C in the first place. Also, if you know C, you must unlearn
some programming habits as you make the transition to C++. If you don’t know C, you have to
master the C components, the OOP components, and the generic components to learn C++,
but at least you may not have to unlearn programming habits. If you are beginning to think
that learning C++ may involve some mind-stretching effort on your part, you're right. This
book will guide you through the process in a clear, helpful manner, one step at a time, so the
mind-stretching will be sufficiently gentle to leave your brain resilient.

C++ Primer Plus approaches C++ by teaching both its C basis and its new components, so it
assumes that you have no prior knowledge of C. You'll start by learning the features C++ shares
with C. Even if you know C, you may find this part of the book a good review. Also, it points
out concepts that will become important later, and it indicates where C++ differs from C. After
you have a good grounding in the basics of C, you'll learn about the C++ superstructure. At
that point, you'll learn about objects and classes and how C++ implements them. And you will
learn about templates.

This book is not intended to be a complete C++ reference; it doesn’t explore every nook and
cranny of the language. But you will learn all the major features of the language, including
some, such as templates, exceptions, and namespaces, that are more recent additions.

Now let’s take a brief look at some of C++%s background.

The Origins of C++: A Little History

Computer technology has evolved at an amazing rate over the past few decades. Today a note-
book computer can compute faster and store more information than the mainframe computers
of the 1960s. (Quite a few programmers can recall bearing offerings of decks of punched cards
to be submitted to a mighty, room-filling computer system with a majestic 100KB of mem-
ory—not enough memory to run a good personal computer game today.) Computer languages
have evolved, too. The changes may not be as dramatic, but they are important. Bigger, more
powerful computers spawn bigger, more complex programs, which, in turn, raise new prob-
lems in program management and maintenance.

In the 1970s, languages such as C and Pascal helped usher in an era of structured program-
ming, a philosophy that brought some order and discipline to a field badly in need of these
qualities. Besides providing the tools for structured programming, C also produced compact,
fast-running programs, along with the ability to address hardware matters, such as managing
communication ports and disk drives. These gifts helped make C the dominant programming
language in the 1980s. Meanwhile, the 1980s witnessed the growth of a new programming
paradigm: object-oriented programming, or OOP, as embodied in languages such as SmallTalk
and C++. Let’s examine these C and OOP a bit more closely.

Chapter 1 ¢ GETTING STARTED 13

The C Language

In the early 1970s, Dennis Ritchie of Bell Laboratories was working on a project to develop the
Unix operating system. (An operating system is a set of programs that manages a computer’s
resources and handles its interactions with users. For example, it's the operating system that
puts the system prompt onscreen and that runs programs for you.) For this work Ritchie
needed a language that was concise, that produced compact, fast programs, and that could
control hardware efficiently. Traditionally, programmers met these needs by using assembly
language, which is closely tied to a computer’s internal machine language. However, assembly
language is a low-level language—that is, it is specific to a particular computer processor. So if
you want to move an assembly program to a different kind of computer, you may have to com-
pletely rewrite the program, using a different assembly language. It was a bit as if each time
you bought a new car, you found that the designers decided to change where the controls
went and what they did, forcing you to relearn how to drive. But Unix was intended to work
on a variety of computer types (or platforms). That suggested using a high-level language. A
high-level language is oriented toward problem solving instead of toward specific hardware.
Special programs called compilers translate a high-level language to the internal language of a
particular computer. Thus, you can use the same high-level language program on different
platforms by using a separate compiler for each platform. Ritchie wanted a language that com-
bined low-level efficiency and hardware access with high-level generality and portability. So,
building from older languages, he created C.

C Programming Philosophy

Because C++ grafts a new programming philosophy onto C, we should first take a look at the
older philosophy that C follows. In general, computer languages deal with two concepts—data
and algorithms. The data constitutes the information a program uses and processes. The algo-
rithms are the methods the program uses (see Figure 1.1). Like most mainstream languages
when C was created, C is a procedural language. That means it emphasizes the algorithm side
of programming. Conceptually, procedural programming consists of figuring out the actions a
computer should take and then using the programming language to implement those actions.
A program prescribes a set of procedures for the computer to follow to produce a particular
outcome, much as a recipe prescribes a set of procedures for a cook to follow to produce a
cake.

Earlier procedural languages, such as FORTRAN and BASIC, ran into organizational problems
as programs grew larger. For example, programs often use branching statements, which route
execution to one or another set of instructions, depending on the result of some sort of test.
Many older programs had such tangled routing (called “spaghetti programming”) that it was
virtually impossible to understand a program by reading it, and modifying such a program was
an invitation to disaster. In response, computer scientists developed a more disciplined style of
programming called structured programming. C includes features to facilitate this approach.
For example, structured programming limits branching (choosing which instruction to do
next) to a small set of well-behaved constructions. C incorporates these constructions (the for
loop, the while loop, the do while loop, and the if else statement) into its vocabulary.

14 C++ PRIMER PLUS, FIFTH EDITION

FIGURE 1'1, DATA ALGORITHMS
Data + algorithms =
program. 1/2 cup butter cream butter
1 cup sugar + gradually, add sugar
2 eggs break eggs

PROGRAM

Top-down design was another of the new principles. With C, the idea is to break a large pro-
gram into smaller, more manageable tasks. If one of these tasks is still too broad, you divide it
into yet smaller tasks. You continue with this process until the program is compartmentalized
into small, easily programmed modules. (Organize your study. Aargh! Well, organize your
desk, your table top, your filing cabinet, and your bookshelves. Aargh! Well, start with the
desk and organize each drawer, starting with the middle one. Hmmm, perhaps I can manage
that task.) Cs design facilitates this approach, encouraging you to develop program units called
functions to represent individual task modules. As you may have noticed, the structured pro-
gramming techniques reflect a procedural mind-set, thinking of a program in terms of the
actions it performs.

The C++ Shift: Object-Oriented Programming

Although the principles of structured programming improved the clarity, reliability, and ease of
maintenance of programs, large-scale programming still remains a challenge. OOP brings a
new approach to that challenge. Unlike procedural programming, which emphasizes algo-
rithms, OOP emphasizes the data. Rather than try to fit a problem to the procedural approach
of a language, OOP attempts to fit the language to the problem. The idea is to design data
forms that correspond to the essential features of a problem.

In C++, a class is a specification describing such a new data form, and an object is a particular
data structure constructed according to that plan. For example, a class could describe the gen-
eral properties of a corporation executive (name, title, salary, unusual abilities, for example),
while an object would represent a specific executive (Guilford Sheepblat, vice president,
$325,000, knows how to restore the Windows registry). In general, a class defines what data is
used to represent an object and the operations that can be performed on that data. For exam-
ple, suppose you were developing a computer drawing program capable of drawing a rectan-
gle. You could define a class to describe a rectangle. The data part of the specification could

Chapter 1 e GETTING STARTED

include such things as the location of the corners, the height and width, the color and style of
the boundary line, and the color and pattern used to fill the rectangle. The operations part of
the specification could include methods for moving the rectangle, resizing it, rotating it,
changing colors and patterns, and copying the rectangle to another location. If you then used
your program to draw a rectangle, it would create an object according to the class specifica-
tion. That object would hold all the data values describing the rectangle, and you could use
the class methods to modify that rectangle. If you drew two rectangles, the program would
create two objects, one for each rectangle.

The OOP approach to program design is to first design classes that accurately represent those
things with which the program deals. For example, a drawing program might define classes to
represent rectangles, lines, circles, brushes, pens, and the like. The class definitions, recall,
include a description of permissible operations for each class, such as moving a circle or rotat-
ing a line. Then you would proceed to design a program, using objects of those classes. The
process of going from a lower level of organization, such as classes, to a higher level, such as
program design, is called bottom-up programming.

There’s more to OOP than the binding of data and methods into a class definition. For exam-
ple, OOP facilitates creating reusable code, and that can eventually save a lot of work.
Information hiding safeguards data from improper access. Polymorphism lets you create multi-
ple definitions for operators and functions, with the programming context determining which
definition is used. Inheritance lets you derive new classes from old ones. As you can see, OOP
introduces many new ideas and involves a different approach to programming than does pro-
cedural programming. Instead of concentrating on tasks, you concentrate on representing con-
cepts. Instead of taking a top-down programming approach, you sometimes take a bottom-up
approach. This book will guide you through all these points, with plenty of easily grasped
examples.

Designing a useful, reliable class can be a difficult task. Fortunately, OOP languages make it
simple to incorporate existing classes into your own programming. Vendors provide a variety
of useful class libraries, including libraries of classes designed to simplify creating programs for
environments such as Windows or the Macintosh. One of the real benefits of C++ is that it lets
you easily reuse and adapt existing, well-tested code.

C++ and Generic Programming

Generic programming is yet another programming paradigm supported by C++. It shares with
OOP the aim of making it simpler to reuse code and the technique of abstracting general con-
cepts. But whereas OOP emphasizes the data aspect of programming, generic programming
emphasizes the algorithmic aspect. And its focus is different. OOP is a tool for managing large
projects, whereas generic programming provides tools for performing common tasks, such as
sorting data or merging lists. The term generic refers to create code that is type independent.
C++ data representations come in many types—integers, numbers with fractional parts, char-
acters, strings of characters, and user-defined compound structures of several types. If, for
example, you wanted to sort data of these various types, you would normally have to create a
separate sorting function for each type. Generic programming involves extending the language

15

16 C++ PRIMER PLUS, FIFTH EDITION

so that you can write a function for a generic (that is, not specified) type once and use it for a
variety of actual types. C++ templates provide a mechanism for doing that.

The Genesis of C++

Like C, C++ began its life at Bell Labs, where Bjarne Stroustrup developed the language in the
early 1980s. In Stroustrup’s own words, “C++ was designed primarily so that my friends and 1
would not have to program in assembler, C, or various modern high-level languages. Its main
purpose was to make writing good programs easier and more pleasant for the individual pro-
grammer” (Bjarne Stroustrup, The C++ Programming Language, Third Edition. Reading, MA:

Addison-Wesley, 1997).

=] _
Ud Real-World Note: Bjarne Stroustrup’s Home Page

Bjarne Stroustrup designed and implemented the C++ programming language and is the author of

the definitive reference manuals The C++ Programming Language and The Design and Evolution of
C++. His personal website at AT&T Labs Research should be the first C++ bookmark, or favorite, you
create:

www.research.att.com/~bs

This site includes an interesting historical perspective of the hows and whys of the C++ language,
Stroustrup’s biographical material, and C++ FAQs. Surprisingly, Stroustrup’s most frequently asked
question is how to pronounce Bjarne Stroustrup. Download the .WAV file to hear for yourself!

Stroustrup was more concerned with making C++ useful than with enforcing particular pro-
gramming philosophies or styles. Real programming needs are more important than theoretical
purity in determining C++ language features. Stroustrup based C++ on C because of Cs
brevity, its suitability to system programming, its widespread availability, and its close ties to
the Unix operating system. C++s OOP aspect was inspired by a computer simulation language
called Simula67. Stroustrup added OOP features and generic programming support to C with-
out significantly changing the C component. Thus C++ is a superset of C, meaning that any
valid C program is a valid C++ program, too. There are some minor discrepancies, but nothing
crucial. C++ programs can use existing C software libraries. Libraries are collections of pro-
gramming modules that you can call up from a program. They provide proven solutions to
many common programming problems, thus saving you much time and effort. This has
helped the spread of C++.

The name C++ comes from the C increment operator ++, which adds one to the value of a vari-
able. Therefore, the name C++ correctly suggests an augmented version of C.

A computer program translates a real-life problem into a series of actions to be taken by a
computer. While the OOP aspect of C++ gives the language the ability to relate to concepts
involved in the problem, the C part of C++ gives the language the ability to get close to the
hardware (see Figure 1.2). This combination of abilities has enabled the spread of C++. It may
also involve a mental shift of gears as you turn from one aspect of a program to another.
(Indeed, some OOP purists regard adding OOP features to C as being akin to adding wings to

Chapter 1 e GETTING STARTED 17

a pig, albeit a lean, efficient pig.) Also, because C++ grafts OOP onto C, you can ignore C++%
object-oriented features. But you'll miss a lot if that’ all you do.

FIGURE 1.2
C++ duality.

OOP heritage provides
a high level of abstraction.

north_america.show();

BO

C heritage provides
low-level hardware access.

set byte at
address

01000 to 0

Only after C++ achieved some success did Stroustrup add templates, enabling generic pro-
gramming. And only after the template feature had been used and enhanced did it become
apparent that templates were perhaps as significant an addition as OOP—or even more signifi-
cant, some would argue. The fact that C++ incorporates both OOP and generic programming,
as well as the more traditional procedural approach, demonstrates that C++ emphasizes the
utilitarian over the ideological approach, and that is one of the reasons for the language’s suc-
cess.

Portability and Standards

Say you've written a handy C++ program for the elderly Pentium PC computer at work, but
management decides to replace the machine with a Macintosh G5—a computer using a differ-
ent processor and a different operating system. Can you run your program on the new plat-
form? Of course, you'll have to recompile the program, using a C++ compiler designed for the
new platform. But will you have to make any changes to the code you wrote? If you can
recompile the program without making changes and it runs without a hitch, we say the pro-
gram is portable.

18

C++ PRIMER PLUS, FIFTH EDITION

There are a couple obstacles to portability, the first of which is hardware. A program that is
hardware specific is not likely to be portable. One that takes direct control of an IBM PC video
board, for example, speaks gibberish as far as, say, a Sun is concerned. (You can minimize
portability problems by localizing the hardware-dependent parts in function modules; then
you just have to rewrite those specific modules.) We will avoid that sort of programming in
this book.

The second obstacle to portability is language divergence. Certainly, that can be a problem
with spoken languages. A Yorkshireman’s description of the day’s events may not be portable
to Brooklyn, even though English is spoken in both areas. Computer languages, too, can
develop dialects. Is the Windows XP C++ implementation the same as the Red Hat Linux
implementation or the Macintosh OS X implementation? Although most implementers would
like to make their versions of C++ compatible with others, it’s difficult to do so without a pub-
lished standard describing exactly how the language works. Therefore, the American National
Standards Institute (ANSI) created a committee in 1990(ANSI X3]J16) to develop a standard
for C++. (ANSI had already developed a standard for C.) The International Organization for
Standardization (ISO) soon joined the process with its own committee (ISO-WG-21), creating
a joint ANSI/ISO effort to develop the a standard for C++. These committees met jointly three
times a year, and we’ll simply lump them together notationally as the ANSI/ISO committee.
ANSV/ISO committee’s decision to create a standard emphasizes that C++ has become an
important and widespread language. It also indicates that C++ has reached a certain level of
maturity, for it's not productive to introduce standards while a language is developing rapidly.
Nonetheless, C++ has undergone significant changes since the ANSI/ISO commiittee began its
work.

Work on the ANSI/ISO C++ Standard began in 1990. The committee issued some interim
working papers in the following years. In April 1995 it released a Committee Draft (CD) for
public comment. In December 1996 it released a second version (CD2) for further public
review. These documents not only refined the description of existing C++ features but also
extended the language with exceptions, runtime type identification (RTTI), templates, and the
Standard Template Library (STL). The final International Standard (ISO/IEC 14882:1998) was
adopted in 1998 by the ISO, International Electrotechnical Commission (IEC), and ANSI.
2003 brought the publication of the second edition of the C++ standard (IOS/IEC
14882:2003); the new edition is a technical revision, meaning that it tidies up the first edi-
tion—fixing typos, reducing ambiguities, and the like—but doesn’t change the language fea-
tures. This book is based on that standard.

The ANSI/ISO C++ Standard additionally draws on the ANSI C Standard because C++ is sup-
posed to be, as far as possible, a superset of C. That means that any valid C program ideally
should also be a valid C++ program. There are a few differences between ANSI C and the cor-
responding rules for C++, but they are minor. Indeed, ANSI C incorporates some features first
introduced in C++, such as function prototyping and the const type qualifier.

Prior to the emergence of ANSI C, the C community followed a de facto standard based on the
book The C Programming Language, by Kernighan and Ritchie (Addison-Wesley Publishing

Chapter 1 e GETTING STARTED

Company, Reading, MA, 1978). This standard was often termed K&R C; with the emergence
of ANSI C, the simpler K&R C is now sometimes called classic C.

The ANSI C Standard not only defines the C language, it also defines a standard C library that
ANSI C implementations must support. C++ also uses that library; this book refers to it as the
standard C library or the standard library. In addition, the ANSI/ISO C++ standard provides a
standard library of C++ classes.

More recently, the C Standard has been revised; the new standard, often called C99, was
adopted by the ISO in 1999 and ANSI in 2000. This standard adds some features to C, such as
anew integer type, that some C++ compilers support. Although not part of the current C++
Standard, these features may become part of the next C++ Standard.

Before the ANSI/ISO C++ committee began its work, many people accepted the most recent
Bell Labs version of C++ as a standard. For example, a compiler might describe itself as being
compatible with Release 2.0 or Release 3.0 of C++.

C++ continues to evolve, and work has already begun on producing the next version of the
standard. The new version is informally labeled C++0X because the expected completion date
is near the end of this decade, around 20009.

This book describes the ISO/ANSI C++ Standard, second edition (ISO/IEC 14882:2003), so
the examples should work with any C++ implementation that is compatible with that stan-
dard. (At least, this is the vision and hope of portability.) However, the C++ Standard is still
new, and you may find a few discrepancies. For example, if your compiler is not a recent ver-
sion, it may lack namespaces or the newest template features. Support for the STL, described
in Chapter 16, “The string Class and the Standard Template Library,” is spotty for older com-
pilers. Some older Unix systems use a front-end translator that passes the translated code to a
C compiler that is not fully ANSI compatible, resulting in some language features being left
unimplemented and in some standard ANSI library functions and header files not being sup-
ported. Even if a compiler does conform to the Standard, some things, such as the number of
bytes used to hold an integer, are implementation dependent.

Before getting to the C++ language proper, let’s cover some of the groundwork related to creat-
ing programs.

The Mechanics of Creating a Program

Suppose you've written a C++ program. How do you get it running? The exact steps depend
on your computer environment and the particular C++ compiler you use, but they should
resemble the following steps (see Figure 1.3):

1. Use a text editor of some sort to write the program and save it in a file. This file consti-
tutes the source code for your program.

2. Compile the source code. This means running a program that translates the source code
to the internal language, called machine language, used by the host computer. The file
containing the translated program is the object code for your program.

19

20 C++ PRIMER PLUS, FIFTH EDITION

3. Link the object code with additional code. For example, C++ programs normally use
libraries. A C++ library contains object code for a collection of computer routines, called
functions, to perform tasks such as displaying information onscreen or calculating the
square root of a number. Linking combines your object code with object code for the
functions you use and with some standard startup code to produce a runtime version of
your program. The file containing this final product is called the executable code.

You will encounter the term source code throughout this book, so be sure to file it away in your
personal random-access memory.

FIGURE 1.3

. source code
Programming steps.

COMPILER

object code

startup code

\
LINKER
/

library code

}

executable code

The programs in this book are generic and should run in any system that supports modern
C++. (However, you may need one of the latest versions to get support for namespaces and the
newest template features.) The steps for putting together a program may vary. Let’s look a little
further at these steps.

Creating the Source Code File

The rest of the book deals with what goes into a source file; this section discusses the mechan-
ics of creating one. Some C++ implementations, such as Microsoft Visual C++, Borland C++
(various versions), Watcom C++, Digital Mars C++, and Metrowerks CodeWarrior, provide
Integrated Development Environments (IDEs) that let you manage all steps of program develop-
ment, including editing, from one master program. Other implementations, such as AT&T
C++ or GNU C++ on Unix and Linux, and the free versions of the Borland and Digital Mars
compilers, just handle the compilation and linking stages and expect you to type commands
on the system command line. In such cases, you can use any available text editor to create and
modify source code. On a Unix system, for example, you can use vi or ed or ex or emacs. On
a DOS system, you can use edlin or edit or any of several available program editors. You can

Chapter 1 e GETTING STARTED 21

even use a word processor, provided that you save the file as a standard DOS ASCII text file
instead of in a special word processor format.

In naming a source file, you must use the proper suffix to identify the file as a C++ file. This
not only tells you that the file is C++ source code, it tells the compiler that, too. (If a Unix
compiler complains to you about a “bad magic number,” that’s just its endearingly obscure way
of saying that you used the wrong suffix.) The suffix consists of a period followed by a charac-
ter or group of characters called the extension (see Figure 1.4).

FIGURE 1.4 Soiffy.c
The parts of a source &chﬂ
code filename. |

| a period

base name for file file name extension

The extension you use depends on the C++ implementation. Table 1.1 shows some common
choices. For example, spiffy.C is a valid Unix C++ source code filename. Note that Unix is
case sensitive, meaning you should use an uppercase C character. Actually, a lowercase ¢
extension also works, but standard C uses that extension. So, to avoid confusion on Unix sys-
tems, you should use ¢ with C programs and € with C++ programs. If you don’t mind typing
an extra character or two, you can also use the cc and cxx extensions with some Unix systems.
DOS, being a bit simple-minded compared to Unix, doesn't distinguish between uppercase
and lowercase, so DOS implementations use additional letters, as shown in Table 1.1, to dis-
tinguish between C and C++ programs.

TABLE 1.1 Source Code Extensions

C++ Implementation Source Code Extension(s)
Unix C, cC, CXX, C

GNU C++ C, CC, CXX, Cpp, C++
Digital Mars Cpp, CXX

Borland C++ cpp

Watcom cpp

Microsoft Visual C++ cpp, CXX, CcC

Metrowerks CodeWarrior CPP, CP, CC, CXX, C++

22

C++ PRIMER PLUS, FIFTH EDITION

Compilation and Linking

Originally, Stroustrup implemented C++ with a C++-to-C compiler program instead of devel-
oping a direct C++-to-object code compiler. This program, called cfront (for C front end),
translated C++ source code to C source code, which could then be compiled by a standard C
compiler. This approach simplified introducing C++ to the C community. Other implementa-
tions have used this approach to bring C++ to other platforms. As C++ has developed and
grown in popularity, more and more implementers have turned to creating C++ compilers that
generate object code directly from C++ source code. This direct approach speeds up the com-
pilation process and emphasizes that C++ is a separate, if similar, language.

Often the distinction between a cfront translator and a compiler is nearly invisible to the user.
For example, on a Unix system the CC command may first pass your program to the cfront
translator and then automatically pass the translator’s output on to the C compiler, which is
called cc. Henceforth, we'll use the term compiler to include translate-and-compile combina-
tions. The mechanics of compiling depend on the implementation, and the following sections
outline a few common forms. These sections outline the basic steps, but they are no substitute
for consulting the documentation for your system.

If you have access to the cfront translator and know C, you may want to inspect the C trans-
lations of your C++ programs to get an inside look at how some C++ features are imple-
mented.

Unix Compiling and Linking

The traditional C++ Unix system compiler is invoked with the CC command. However, these
days a Unix computer instead might have no compiler, a proprietary compiler, or a third-party
compiler, perhaps commercial, perhaps freeware, such as the GNU g++ compiler. In many of
these other cases (but not in the no-compiler case!), the ¢C command still works, with the
actual compiler being invoked differing from system to system. For simplicity, you should
assume that CC is available, but realize that you might have to substitute a different command
for ¢C in the following discussion.

You use the ¢C command to compile your program. The name is in uppercase letters to distin-
guish it from the standard Unix C compiler cc. The ¢C compiler is a command-line compiler,
meaning you type compilation commands on the Unix command line.

For example, to compile the C++ source code file spiffy.C, you would type this command at
the Unix prompt:

CC spiffy.C

If, through skill, dedication, or luck, your program has no errors, the compiler generates an
object code file with an o extension. In this case, the compiler produces a file named
spiffy.o.

Next, the compiler automatically passes the object code file to the system linker, a program
that combines your code with library code to produce the executable file. By default, the exe-
cutable file is called a.out. If you used just one source file, the linker also deletes the

Chapter 1 e GETTING STARTED

spiffy.o file because it’s no longer needed. To run the program, you just type the name of the
executable file:

a.out

Note that if you compile a new program, the new a.out executable file replaces the previous
a.out. (That’s because executable files take a lot of space, so overwriting old executable files
helps reduce storage demands.) But if you develop an executable program you want to keep,
you just use the Unix mv command to change the name of the executable file.

In C++, as in C, you can spread a program over more than one file. (Many of the programs in
this book in Chapters 8, “Adventures in Functions,” through 16 do this.) In such a case, you
can compile a program by listing all the files on the command line, like this:

CC my.C precious.C

If there are multiple source code files, the compiler does not delete the object code files. That
way, if you just change the my. C file, you can recompile the program with this command:

CC my.C precious.o
This recompiles the my.C file and links it with the previously compiled precious.o file.

You might have to identify some libraries explicitly. For example, to access functions defined
in the math library, you may have to add the -1m flag to the command line:

CC usingmath.C -1m

Linux Compiling and Linking

Linux systems most commonly use g++, the GNU C++ compiler from the Free Software
Foundation. The compiler is included in most Linux distributions, but it may not always be
installed. The g++ compiler works much like the standard Unix compiler. For example,

g++ spiffy.cxx

produces an executable file call a.out.

Some versions might require that you link in the C++ library:

g++ spiffy.cxx -1lg++

To compile multiple source files, you just list them all in the command line:
g++ my.cxx precious.cxx

This produces an executable file called a.out and two object code files, my.o and precious.o.
If you subsequently modify just one of the source code files, say my.cxx, you can recompile by
using my.cxx and the precious.o:

g++ my.cxx precious.o
The Comeau C++ compiler (see www.comeaucomputing.com) is another possibility; it

requires the presence of the GNU compiler. However, the Comeau compiler provides the most
complete and rigorous implementation of the C++ standard.

23

24 C++ PRIMER PLUS, FIFTH EDITION

The GNU compiler is available for many platforms, including the command-line mode for
Windows-based PCs as well as for Unix systems on a variety of platforms.

Command-Line Compilers for Windows Command-Line Mode

The most inexpensive route for compiling C++ programs on a Windows PC is to download a
free command-line compiler that runs in a Windows MS-DOS window. The MS-DOS version
of the GNU C++ compiler is called gpp, and it is available at www.delorie.com/djgpp. Borland
provides a free command-line compiler at www.borland.com/bcppbuilder/freecompiler. A
slightly newer version of this compiler comes with the relatively inexpensive personal version
of Borland C++BuilderX. Digital Mars has a free command-line compiler at
www.digitalmars.com. The C++BuilderX installation is pretty automatic. For the rest, you need
to read the installation directions carefully because parts of the installation processes are not
automatic.

To use the gpp compiler, you first open an MS-DOS window. To compile a source code file
named great.cpp, you type the following command at the prompt:

gpp great.cpp
If the program compiles successfully, the resulting executable file is named a. exe.

To use the Borland online compiler, you first open an MS-DOS window. To compile a source
code file named great.cpp, you type the following command at the prompt:

bcc32 great.cpp

If the program compiles successfully, the resulting executable file is named great.exe.

Windows Compilers

Windows products are too abundant and too often revised to make it reasonable to describe
them all individually. Popular ones include Microsoft, Borland, Metrowerks, and Digital Mars.
Despite different designs and goals, they share some common features.

Typically, you must create a project for a program and add to the project the file or files consti-
tuting the program. Each vendor supplies an IDE with menu options and, possibly, automated
assistance, in creating a project. One very important matter you have to establish is the kind of
program you're creating. Typically, the compiler offers many choices, such as a Windows appli-
cation, an MFC Windows application, a dynamic link library, an ActiveX control, a DOS or
character-mode executable, a static library, or a console application. Some of these may be
available in both 16-bit and 32-bit versions.

Because the programs in this book are generic, you should avoid choices that require platform-
specific code, such as Windows applications. Instead, you want to run in a character-based
mode. The choice depends on the compiler. For Microsoft Visual C++, you use the Win32
Console Application option. (If you are using Visual Studio .NET, you can also check the
Empty Project option I Application Settings.) Metrowerks compilers offer a Win32 Console
C++ App option and a Win32 WinSIOUX C++ App option, both of which work. (The former
runs the compiled program in a DOS window; the latter runs it in a standard Windows

Chapter 1 e GETTING STARTED

window.) Some Borland versions feature an EasyWin choice that emulates a DOS session;
other versions offer a Console option. In general, you should look to see if there is an option
labeled Console, character-mode, or DOS executable, and try that.

After you have the project set up, you have to compile and link your program. The IDE typi-
cally gives you several choices, such as Compile, Build, Make, Build All, Link, Execute, and
Run (but not necessarily all these choices in the same IDE!):

* Compile typically means compile the code in the file that is currently open.

* Build or Make typically means compile the code for all the source code files in the pro-
ject. This is often an incremental process. That is, if the project has three files, and you
change just one, then just that one is recompiled.

* Build All typically means compile all the source code files from scratch.

* As described earlier, Link means combine the compiled source code with the necessary
library code.

* Run or Execute means run the program. Typically, if you have not yet done the earlier
steps, Run does them before trying to run a program.

A compiler generates an error message when you violate a language rule and identifies the line
that has the problem. Unfortunately, when you are new to a language, you may find it difficult
to understand the message. Sometimes the actual error may occur before the identified line,
and sometimes a single error generates a chain of error messages.

When fixing errors, fix the first error first. If you can’t find it on the line identified as the line with the
error, check the preceding line.

Be aware that the fact that a particular compiler accepts a program doesn't necessarily mean
that the program is valid C++. And the fact that a particular compiler rejects a program doesn't
necessarily mean that the program is invalid C++. Current compilers are more compliant with
the Standard than their predecessors of two or three years ago. At this time, the Comeau com-
piler (and other users of the Edison Design Group front end) comes closest an exact image of
the standard.

@ Tip
=
Occasionally, compilers get confused after incompletely building a program and respond by giving
meaningless error messages that cannot be fixed. In such cases, you can clear things up by selecting
Build Al to restart the process from scratch. Unfortunately, it is difficult to distinguish this situation

from the more common one in which the error messages merely seem to be meaningless.

25

26

C++ PRIMER PLUS, FIFTH EDITION

Usually, the IDE lets you run the program in an auxiliary window. Some IDEs close the win-
dow as soon as the program finishes execution, and some leave it open. If your compiler closes
the window, youw'll have a hard time seeing the output, unless you have quick eyes and a pho-
tographic memory. To see the output, you must place some additional code at the end of the
program:

cin.get(); // add this statement

cin.get(); // and maybe this, too

return 0;

}

The cin.get () statement reads the next keystroke, so this statement causes the program to
wait until you press the Enter key. (No keystrokes get sent to a program until you press Enter,
so there’s no point in pressing another key.) The second statement is needed if the program
otherwise leaves an unprocessed keystroke after its regular input. For example, if you enter a
number, you type the number and then press Enter. The program reads the number but leaves
the Enter keystroke unprocessed, and it is then read by the first cin.get().

The Borland C++Builder compiler departs a bit from more traditional designs. Its primary aim
is Windows programming. To use older versions for generic programs, you select File, New.
Then you select Console App. A window opens that includes a skeleton version of main().
You should retain the following two nonstandard lines if they appear in the skeleton:

#include <vcl\condefs.h>
#pragma hdrstop

For C++BuilderX, select File, New, New Console. You don't get a skeleton main (). Instead, you
need to select File, New File and add a new .cpp file to the project.

C++ on the Macintosh

The primary Macintosh C++ compiler is Metrowerks CodeWarrior. It provides project-based
IDEs that are similar, in basic concepts, to what you would find in a Windows compiler. You
start by selecting File, New Project. You are then given a choice of project types. For
CodeWarrior, choose MacOS:C/C++:ANSI C++ Console in older versions, or
MacOS:C/C++:Standard Console:Std C++ Console in mid-vintage versions, or MacOS C++
Stationery:Mac OS Carbon:Standard Console:C++ Console Carbon. (You can make other valid
choices; for example, you might opt for Classic instead of Carbon or C++ Console Carbon
Altivec instead of plain C++ Console Carbon.)

CodeWarrior supplies a small source code file as part of the initial project. You can try compil-
ing and running that program to see if you have your system set up properly. However, after
you provide your own code, you should delete this file from the project. You do so by high-
lighting the file in the project window and then selecting Project, Remove.

Next, you must add your source code to the project. You can use File, New to create a new file
or File, Open to open an existing file. You should use a proper suffix, such as .cp or .cpp. You
use the Project menu to add this file to the project list. Some programs in this book require
that you add more than one source code file. When you are ready, you select Project, Run.

Chapter 1 e GETTING STARTED

@ Tip

©
To save time, you can use just one project for all the sample programs. You should delete the previ-
ous sample source code file from the project list and add the current source code. This saves disk

space.

The compiler includes a debugger to help you locate the causes of runtime problems.

Summary

As computers have grown more powerful, computer programs have become larger and more
complex. In response to these conditions, computer languages have evolved so that it’s easier
to manage the programming process. The C language incorporated features such as control
structures and functions to better control the flow of a program and to enable a more struc-
tured, modular approach. To these tools C++ adds support for object-oriented programming
and generic programming. This enables even more modularity and facilitates the creation of
reusable code, which saves time and increases program reliability.

The popularity of C++ has resulted in a large number of implementations for many computing
platform; the ISO/ANSI C++ Standard provides a basis for keeping these many implementa-
tions mutually compatible. The Standard establishes the features the language should have, the
behavior the language should display, and a standard library of functions, classes, and tem-
plates. The Standard supports the goal of a portable language across different computing plat-
forms and different implementations of the language.

To create a C++ program, you create one or more source files containing the program as
expressed in the C++ language. These are text files that must be compiled and linked to pro-
duce the machine-language files that constitute executable programs. These tasks are often
accomplished in an IDE that provides a text editor for creating the source files, a compiler and
a linker for producing executable files, and other resources, such as project management and
debugging capabilities. But the same tasks can also be performed in a command-line environ-
ment by invoking the appropriate tools individually.

27

CHAPTER 2

SETTING OUT TO C++

In this chapter you'll learn about the following:

e How to create a C++ program e How to place comments in a C++
rogram
e The general format for a C++ pro- prog
gram e How and when to use endl
e The #include directive e How to declare and use variables
e The main() function e How to use the cin object for
. input
e How to use the cout object for P
output e How to define and use simple
functions

hen you construct a simple home, you begin with the foundation and the framework.

If you don’t have a solid structure from the beginning, you'll have trouble later filling

in the details, such as windows, door frames, observatory domes, and parquet ball-
rooms. Similarly, when you learn a computer language, you should begin by learning the basic
structure for a program. Only then can you move on to the details, such as loops and objects.
This chapter gives you an overview of the essential structure of a C++ program and previews
some topics—notably functions and classes—covered in much greater detail in later chapters.
(The idea is to introduce at least some of the basic concepts gradually en route to the great
awakenings that come later.)

C++ Initiation

Let’s begin with a simple C++ program that displays a message. Listing 2.1 uses the C++ cout
(pronounced “see-out”) facility to produce character output. The source code includes several
comments to the reader; these lines begin with //, and the compiler ignores them. C++ is case
sensitive; that is, it discriminates between uppercase characters and lowercase characters. This
means you must be careful to use the same case as in the examples. For example, this program
uses cout, and if you substitute Cout or COUT, the compiler rejects your offering and accuses

30 C++ PRIMER

PLUS, FIFTH EDITION

you of using unknown identifiers. (The compiler is also spelling sensitive, so don't try kout or
coot, either.) The cpp filename extension is a common way to indicate a C++ program; you
might need to use a different extension, as described in Chapter 1, “Getting Started.”

LISTING 2.1

myfirst.cpp

// myfirst.cpp--displays a message

#include <iostream> // a PREPROCESSOR directive
int main() // function header
{ /| start of function body
using namespace std; /] make definitions visible
cout << "Come up and C++ me some time."; // message
cout << endl; // start a new line
cout << "You won't regret it!" << endl; // more output
return 0; // terminate main()

N

// end of function body

Compatibility Note

If you're using an older compiler, you might need to use #include <iostream.h> instead of
#include <iostream>; in that case, you also would omit the using namespace std; line. That is,
you'd replace

#include <iostream> // the way of the future

with

#include <iostream.h> // in case the future has not yet arrived

and you’d omit the following completely:

using namespace std; // also the way of the future

(Some very old compilers use #include <stream.h> instead of #include <iostream.h>; if you
have a compiler that old, you should get either a newer compiler or an older book.) The switch from

iostream.h to iostreanm is relatively recent, and you may run across compilers that haven't imple-
mented it yet.

Some windowing environments run the program in a separate window and then automatically close
the window when the program finishes. As discussed in Chapter 1, you can make the window stay
open until you strike a key by adding the following line of code before the return statement:

cin.get();

For some programs you must add two of these lines. This code causes the program to wait for a key-
stroke. You'll learn more about this code in Chapter 4, “Compound Types."”

Program Adjustments

You might find that you must alter the examples in this book to run on your system. The two most
common changes are those the first Compatibility Note in this chapter mentions. One is a matter of
language standards; if your compiler is not up to date, you must include iostream.h instead of

Chapter 2 e SETTING OUT TO C++ 31

iostream and omit the namespace line. The second is a matter of the programming environment;
you might need to add one or two cin.get () statements to keep the program output visible
onscreen. Because these adjustments apply equally to every example in this book, the Compatibility
Note is the only alert to them you get. Don't forget them! Future Compatibility Notes alert you to
other possible alterations you might have to make.

After you use your editor of choice to copy this program (or else use the source code files from
the Sams Publishing website, at www. samspublishing.com), you can use your C++ compiler to
create the executable code, as Chapter 1 outlines. Here is the output from running the com-
piled program in Listing 2.1:

Come up and C++ me some time.
You won't regret it!

C Input and Output

If you're used to programming in C, seeing cout instead of the printf () function might come as a
minor shock. C++ can, in fact, use printf (), scanf(), and all the other standard C input and out-
put functions, provided that you include the usual C stdio.h file. But this is a C++ book, so it uses
C++'s input facilities, which improve in many ways upon the C versions.

You construct C++ programs from building blocks called functions. Typically, you organize a
program into major tasks and then design separate functions to handle those tasks. The exam-
ple shown in Listing 2.1 is simple enough to consist of a single function named main(). The
myfirst.cpp example has the following elements:

Comments, indicated by the // prefix

A preprocessor #include directive

A function header: int main()

A using namespace directive

A function body, delimited by { and }

Statements that uses the C++ cout facility to display a message

A return statement to terminate the main() function

Let’s look at these various elements in greater detail. The main() function is a good place to
start because some of the features that precede main(), such as the preprocessor directive, are
simpler to understand after you see what main () does.

The main() Function

Stripped of the trimmings, the sample program shown in Listing 2.1 has the following funda-
mental structure:

32 C++ PRIMER PLUS, FIFTH EDITION

int main()
{
statements
return 0;
}

These lines state that there is a function called main(), and they describe how the function
behaves. Together they constitute a function definition. This definition has two parts: the first
line, int main(), which is called the function header, and the portion enclosed in braces ({
and }), which is the function body. Figure 2.1 shows the main() function. The function header
is a capsule summary of the function’ interface with the rest of the program, and the function
body represents instructions to the computer about what the function should do. In C++ each
complete instruction is called a statement. You must terminate each statement with a semi-
colon, so don't omit the semicolons when you type the examples.

FIGURE 2.1 function name
The main() function.
int main() } function header
(1
function
definition

A

statements
-} function body

return 0;

} terminates functlon

(-
Statements are C++ expressions terminated by a semicolon.

The final statement in main (), called a return statement, terminates the function. You'll learn
more about the return statement as you read through this chapter.

Statements and Semicolons

A statement represents a complete instruction to a computer. To understand your source code, a
compiler needs to know when one statement ends and another begins. Some languages use a state-
ment separator. FORTRAN, for example, uses the end of the line to separate one statement from the
next. Pascal uses a semicolon to separate one statement from the next. In Pascal you can omit the
semicolon in certain cases, such as after a statement just before an END, when you aren‘t actually
separating two statements. (Pragmatists and minimalists will disagree about whether can implies
should.) But C++, like C, uses a semicolon as a terminator rather than as a separator. The difference
is that a semicolon acting as a terminator is part of the statement rather than a marker between
statements. The practical upshot is that in C++ you should never omit the semicolon.

Chapter 2 e SETTING OUT TO C++ 33

The Function Header as an Interface

Right now the main point to remember is that C++ syntax requires you to begin the definition
of the main () function with this header: int main(). This chapter discusses the function
header syntax in more detail later, in the section “Functions,” but, for those who can't put their
curiosity on hold, here’s a preview.

In general, a C++ function is activated, or called, by another function, and the function header
describes the interface between a function and the function that calls it. The part preceding the
function name is called the function return type; it describes information flow from a function
back to the function that calls it. The part within the parentheses following the function name
is called the argument list or parameter list; it describes information flow from the calling func-
tion to the called function. This general format is a bit confusing when you apply it to main()
because you normally don’t call main () from other parts of your program. Typically, however,
main() is called by startup code that the compiler adds to your program to mediate between
the program and the operating system (Unix, Windows XP, or whatever). In effect, the func-
tion header describes the interface between main () and the operating system.

Consider the interface for main(), beginning with the int part. A C++ function called by
another function can return a value to the activating (calling) function. That value is called a
return value. In this case, main() can return an integer value, as indicated by the keyword int.
Next, note the empty parentheses. In general, a C++ function can pass information to another
function when it calls that function. The portion of the function header enclosed in parenthe-
ses describes that information. In this case, the empty parentheses mean that the main() func-
tion takes no information, or, in the usual terminology, main() takes no arguments. (To say
that main () takes no arguments doesn’t mean that main () is an unreasonable, authoritarian
function. Instead, argument is the term computer buffs use to refer to information passed from
one function to another.)

In short, the header
int main()

states that the main() function returns an integer value to the function that calls it and that
main() takes no information from the function that calls it.

Many existing programs use the classic C header instead:

main() // original C style

Under classic C, omitting the return type is the same as saying that the function is type int.
However, C++ has phased out that usage.

You can also use this variant:
int main(void) // very explicit style

Using the keyword void in the parentheses is an explicit way of saying that the function takes
no arguments. Under C++ (but not C), leaving the parentheses empty is the same as using

34

C++ PRIMER PLUS, FIFTH EDITION

void in the parentheses. (In C, leaving the parentheses empty means you are remaining silent
about whether there are arguments.)

Some programmers use this header and omit the return statement:

void main()

This is logically consistent because a void return type means the function doesn’t return a
value. However, although this variant works on some systems, it's not part of the C++
Standard. Thus, on other systems it fails. So you should avoid this form and use the C++
Standard form; it doesn’t require that much more effort to do it right.

Finally, the ANSI/ISO C++ Standard makes a concession to those who complain about the tire-
some necessity of having to place a return statement at the end of main(). If the compiler
reaches the end of main () without encountering a return statement, the effect will be the same
as if you ended main () with this statement:

return 0;

This implicit return is provided only for main() and not for any other function.

Why main() by Any Other Name Is Not the Same

There’s an extremely compelling reason to name the function in the myfirst.cpp program
main(): You must do so. Ordinarily, a C++ program requires a function called main(). (And
not, by the way, Main() or MAIN() or mane (). Remember, case and spelling count.) Because
the myfirst.cpp program has only one function, that function must bear the responsibility of
being main(). When you run a C++ program, execution always begins at the beginning of the
main() function. Therefore, if you don't have main(), you don’t have a complete program, and
the compiler points out that you haven't defined a main() function.

There are exceptions. For example, in Windows programming you can write a dynamic link
library (DLL) module. This is code that other Windows programs can use. Because a DLL
module is not a standalone program, it doesn’t need a main (). Programs for specialized envi-
ronments, such as for a controller chip in a robot, might not need a main(). But your ordinary
standalone program does need a main(); this books discusses that sort of program.

C++ Comments

The double slash (//) introduces a C++ comment. A comment is a remark from the program-
mer to the reader that usually identifies a section of a program or explains some aspect of the
code. The compiler ignores comments. After all, it knows C++ at least as well as you do, and,
in any case, it’s incapable of understanding comments. As far as the compiler is concerned,
Listing 2.1 looks as if it were written without comments, like this:

#include <iostream>

int main()

{
using namespace std;
cout << "Come up and C++ me some time.";
cout << endl;

Chapter 2 e SETTING OUTTO C++ 35

cout << "You won't regret it!" << endl;
return 0;

}

C++ comments run from the // to the end of the line. A comment can be on its own line or it
can be on the same line as code. Incidentally, note the first line in Listing 2.1:

// myfirst.cpp -- displays a message

In this book all programs begin with a comment that gives the filename for the source code
and a brief program summary. As mentioned in Chapter 1, the filename extension for source
code depends on your C++ system. Other systems might use myfirst.C or myfirst.cxx for
names.

Tip
You should use comments to document your programs. The more complex the program, the more
valuable comments are. Not only do they help others to understand what you have done, but also
they help you understand what you've done, especially if you haven't looked at the program for a
while.

C-Style Comments
C++ also recognizes C comments, which are enclosed between /* and */ symbols:

#include <iostream> /* a C-style comment */

Because the C-style comment is terminated by */ rather than by the end of a line, you can spread it
over more than one line. You can use either or both styles in your programs. However, try sticking to
the C++ style. Because it doesn't involve remembering to correctly pair an end symbol with a begin

symbol, it's less likely to cause problems. Indeed, C99 has added the // comment to the C language.

The C++ Preprocessor and the iostream File

Here’s the short version of what you need to know. If your program is to use the usual C++
input or output facilities, you provide these two lines:

#include <iostream>
using namespace std;

If your compiler doesn’t like these lines (for example, if it complains that it can't find the file
iostream), you should try the following single line instead:

#include <iostream.h > // compatible with older compilers

Thats all you really must know to make your programs work, but now let’s take a more in-
depth look.

C++, like C, uses a preprocessor. This is a program that processes a source file before the main
compilation takes place. (Some C++ implementations, as you might recall from Chapter 1, use

36

C++ PRIMER PLUS, FIFTH EDITION

a translator program to convert a C++ program to C. Although the translator is also a form of
preprocessor, we're not discussing that preprocessor; instead, we’re discussing the one that
handles directives whose names begin with #.) You don’t have to do anything special to invoke
this preprocessor. It automatically operates when you compile the program.

Listing 2.1 uses the #include directive:

#include <iostream> // a PREPROCESSOR directive

This directive causes the preprocessor to add the contents of the iostreanm file to your pro-
gram. This is a typical preprocessor action: adding or replacing text in the source code before
it’s compiled.

This raises the question of why you should add the contents of the iostrean file to the pro-
gram. The answer concerns communication between the program and the outside world. The
io in iostream refers to input, which is information brought into the program, and to output,
which is information sent out from the program. C++% input/output scheme involves several
definitions found in the iostrean file. Your first program needs these definitions to use the
cout facility to display a message. The #include directive causes the contents of the iostream
file to be sent along with the contents of your file to the compiler. In essence, the contents of
the iostrean file replace the #include <iostream> line in the program. Your original file is
not altered, but a composite file formed from your file and iostream goes on to the next stage
of compilation.

' Remember

Programs that use cin and cout for input and output must include the iostream file (or, on some
systems, iostream.h).

Header Filenames

Files such as iostream are called include files (because they are included in other files) or
header files (because they are included at the beginning of a file). C++ compilers come with
many header files, each supporting a particular family of facilities. The C tradition has been to
use the h extension with header files as a simple way to identify the type of file by its name.
For example, the C math.h header file supports various C math functions. Initially, C++ did
the same. For example, the header file supporting input and output was named iostream.h.
More recently, however, C++ usage has changed. Now the h extension is reserved for the old C
header files (which C++ programs can still use), whereas C++ header files have no extension.
There are also C header files that have been converted to C++ header files. These files have
been renamed by dropping the h extension (making it a C++-style name) and prefixing the
filename with a ¢ (indicating that it comes from C). For example, the C++ version of math.h is
the cmath header file. Sometimes the C and C++ versions of C header files are identical,
whereas in other cases the new version might have a few changes. For purely C++ header files
such as iostream, dropping the h is more than a cosmetic change, for the h-free header files

Chapter 2 o SETTING OUT TO C++

also incorporate namespaces, the next topic in this chapter. Table 2.1 summarizes the naming
conventions for header files.

TABLE 2.1 Header File Naming Conventions

Kind of Header Convention Example Comments

C++ old style Endsin .h iostream.h Usable by C++ programs

C old style Endsin .h math.h Usable by C and C++ programs
C++ new style No extension iostream Usable by C++ programs,

uses namespace std

Converted C c prefix, cmath Usable by C++ programs,
no extension might use non-C features,
such as namespace std

In view of the C tradition of using different filename extensions to indicate different file types,
it appears reasonable to have some special extension, such as .hx or .hxx, to indicate C++
header files. The ANSI/ISO committee felt so, too. The problem was agreeing on which exten-
sion to use, so eventually they agreed on nothing.

Namespaces

If you use iostream instead of iostream.h, you should use the following namespace directive
to make the definitions in iostream available to your program:

using namespace std;

This is called a using directive. The simplest thing to do is to accept this for now and worry
about it later (for example, in Chapter 9, “Memory Models and Namespaces”). But so that you
won't be left completely in the dark, here’s an overview of what's happening.

Namespace support is a fairly new C++ feature designed to simplify the writing of programs
that combine preexisting code from several vendors. One potential problem is that you might
use two prepackaged products that both have, say, a function called wanda (). If you then use
the wanda () function, the compiler won't know which version you mean. The namespace
facility lets a vendor package its wares in a unit called a namespace so that you can use the
name of a namespace to indicate which vendor’s product you want. So Microflop Industries
could place its definitions in a namespace called Microflop. Then Microflop: :wanda()
would become the full name for its wanda () function. Similarly, Piscine: :wanda() could
denote Piscine Corporation’s version of wanda (). Thus, your program could now use the
namespaces to discriminate between various versions:

Microflop::wanda("go dancing?"); // use Microflop namespace version
Piscine::wanda("a fish named Desire"); // use Piscine namespace version

37

38

C++ PRIMER PLUS, FIFTH EDITION

In this spirit, the classes, functions, and variables that are a standard component of C++ com-
pilers are now placed in a namespace called std. This takes place in the h-free header files.
This means, for example, that the cout variable used for output and defined in iostreamis
really called std: :cout and that endl is really std: :endl. Thus, you can omit the using
directive and code in the following style:

std::cout << "Come up and C++ me some time.";
std::cout << std::endl;

However, most users don't feel like converting pre-namespace code, which uses iostream.h
and cout, to namespace code, which uses iostream and std: : cout, unless they can do so
without a lot of hassle. This is where the using directive comes in. The following line means
you can use names defined in the std namespace without using the std: : prefix:

using namespace std;

This using directive makes all the names in the std namespace available. Modern practice
regards this as a bit lazy. The preferred approach is to make available just those names you
need, with something called a using declaration:

using std::cout; // make cout available

using std::endl; // make endl available
using std::cin; // make cin available

If you use these directives instead of this:

using namespace std; // lazy approach, all names available

you can use cin and cout without attaching std: : to them. But if you need to use other
names from iostream, you have to add them to the using list individually. This book initially
uses the lazy approach for a couple reasons. First, for simple programs, it’s not really a big
issue which namespace management technique you use. Second, I'd rather emphasize the
more basic aspects about learning C++. Later, the book uses the other namespace techniques.

C++ Output with cout

Now let’s look at how to display a message. The myfirst.cpp program uses the following C++
statement:

cout << "Come up and C++ me some time.";

The part enclosed within the double quotation marks is the message to print. In C++, any
series of characters enclosed in double quotation marks is called a character string, presum-
ably because it consists of several characters strung together into a larger unit. The << notation
indicates that the statement is sending the string to cout; the symbols point the way the infor-
mation flows. And what is cout? It’s a predefined object that knows how to display a variety of
things, including strings, numbers, and individual characters. (An object, as you might remem-
ber from Chapter 1, is a particular instance of a class, and a class defines how data is stored
and used.)

Well, using objects so soon is a bit awkward because you won't learn about objects for several
more chapters. Actually, this reveals one of the strengths of objects. You don't have to know the

Chapter 2 e SETTING OUT TO C++ 39

innards of an object in order to use it. All you must know is its interface—that is, how to use
it. The cout object has a simple interface. If string represents a string, you can do the follow-
ing to display it:

cout << string;

This is all you must know to display a string, but now take a look at how the C++ conceptual
view represents the process. In this view, the output is a stream—that is, a series of characters
flowing from the program. The cout object, whose properties are defined in the iostrean file,
represents that stream. The object properties for cout include an insertion operator (<<) that
inserts the information on its right into the stream. Consider the following statement (note the
terminating semicolon):

cout << "Come up and C++ me some time.";

It inserts the string “Come up and C++ me some time.” into the output stream. Thus, rather
than say that your program displays a message, you can say that it inserts a string into the out-
put stream. Somehow, that sounds more impressive. (See Figure 2.2.)

FIGURE 2.2 the insertion
Displaying a string by the cout object operator a string

using cout. |
¢ A

cout << "C++ RULES"

| string inserted into output stream

...and then she said\nC++ RULES

A First Look at Operator Overloading

If you're coming to C++ from C, you probably noticed that the insertion operator (<<) looks just like
the bitwise left-shift operator (<<). This is an example of operator overloading, by which the same
operator symbol can have different meanings. The compiler uses the context to figure out which
meaning is intended. C itself has some operator overloading. For example, the & symbol represents

40

C++ PRIMER PLUS, FIFTH EDITION

both the address operator and the bitwise AND operator. The * symbol represents both multiplication
and dereferencing a pointer. The important point here is not the exact function of these operators
but that the same symbol can have more than one meaning, with the compiler determining the
proper meaning from the context. (You do much the same when you determine the meaning of
“sound” in “sound card” versus “sound financial basis.”) C++ extends the operator overloading
concept by letting you redefine operator meanings for the user-defined types called classes.

The Manipulator endl

Now let’s examine an odd-looking notation that appears in the second output statement in
Listing 2.1:

cout << endl;

endl is a special C++ notation that represents the important concept of beginning a new line.
Inserting end1 into the output stream causes the screen cursor to move to the beginning of the
next line. Special notations like endl that have particular meanings to cout are dubbed manip-
ulators. Like cout, endl is defined in the iostream header file and is part of the std name-
space.

Note that the cout facility does not move automatically to the next line when it prints a string,
so the first cout statement in Listing 2.1 leaves the cursor positioned just after the period at
the end of the output string. The output for each cout statement begins where the last output
ended, so omitting end1 would result in this output for Listing 2.1:

Come up and C++ me some time.You won't regret it!

Note that the Y immediately follows the period. Let’s look at another example. Suppose you try
this code:

cout << "The Good, the";
cout << "Bad, ";

cout << "and the Ukulele";
cout << endl;

It produces the following output:

The Good, theBad, and the Ukulele

Again, note that the beginning of one string comes immediately after the end of the preceding
string. If you want a space where two strings join, you must include it in one of the strings.
(Remember that to try out these output examples, you have to place them in a complete pro-
gram, with a main() function header and opening and closing braces.)

The Newline Character

C++ has another, more ancient, way to indicate a new line in output—the C notation \n:

cout << "What's next?\n"; // \n means start a new line

The \n combination is considered to be a single character called the newline character.

Chapter 2 e SETTING OUT TO C++ 41

If you are displaying a string, you need less typing to include the newline as part of the string
than to tag an endl onto the end:

cout << "Jupiter is a large planet.\n"; // displays sentence, goes to next
line
cout << "Jupiter is a large planet." << endl; // displays sentence, goes to next
line

On the other hand, if you want to generate a newline by itself, both approaches take the same
amount of typing, but most people find the keystrokes for end1 to be more comfortable:

cout << "\n"; /] start a new line
cout << endl; // start a new line

Typically, this book uses an embedded newline character (\n) when displaying quoted strings
and the end1 manipulator otherwise.

The newline character is one example of special keystroke combinations termed “escape
sequences”; they are further discussed in Chapter 3, “Dealing with Data.”

C++ Source Code Formatting

Some languages, such as FORTRAN, are line oriented, with one statement to a line. For these
languages, the carriage return serves to separate statements. In C++, however, the semicolon
marks the end of each statement. This leaves C++ free to treat the carriage return in the same
way as a space or a tab. That is, in C++ you normally can use a space where you would use a
carriage return and vice versa. This means you can spread a single statement over several lines
or place several statements on one line. For example, you could reformat myfirst.cpp as fol-
lows:

#include <iostream>

int
main
() { using

namespace

std; cout
<<

"Come up and C++ me some time."
; cout <<
endl; cout <<
"You won't regret it!" <<
endl;return 0; }

This is visually ugly, but valid, code. You do have to observe some rules. In particular, in C and
C++ you can't put a space, tab, or carriage return in the middle of an element such as a name,
nor can you place a carriage return in the middle of a string. Here are examples of what you
can't do:

int ma in() // INVALID -- space in name
re
turn @; // INVALID -- carriage return in word
cout << "Behold the Beans
of Beauty!"; // INVALID -- carriage return in string

42 C++ PRIMER PLUS, FIFTH EDITION

Tokens and White Space

The indivisible elements in a line of code are called tokens. (See Figure 2.3.) Generally, you
must separate one token from the next with a space, tab, or carriage return, which collectively
are termed white space. Some single characters, such as parentheses and commas, are tokens
that need not be set off by white space. Here are some examples that illustrate when white
space can be used and when it can be omitted:

returnQ; // INVALID, must be return 0;

return(0); // VALID, white space omitted

return (0); // VALID, white space used

intmain(); // INVALID, white space omitted

int main() /] VALID, white space omitted in ()

int main () // ALSO VALID, white space used in ()
FIGURE 2.3 M tokens
Tokens and white space. int main()

{
| white space (newline)
‘ white space (space)
token

Spaces and carriage returns can be used interchangeably.

token
l—l—l_
int

white space (newline)
white space (space)

tokens

C++ Source Code Style

Although C++ gives you much formatting freedom, your programs will be easier to read if you
follow a sensible style. Having valid but ugly code should leave you unsatisfied. Most pro-
grammers use the style of Listing 2.1, which observes these rules:

e One statement per line

* An opening brace and a closing brace for a function, each of which is on its own line
* Statements in a function indented from the braces

» No whitespace around the parentheses associated with a function name

The first three rules have the simple intent of keeping the code clean and readable. The fourth
helps to differentiate functions from some built-in C++ structures, such as loops, that also use
parentheses. This book alerts you to other guidelines as they come up.

Chapter 2 o SETTING OUT TO C++

C++ Statements

A C++ program is a collection of functions, and each function is a collection of statements
C++ has several kinds of statements, so let’s look at some of the possibilities. Listing 2.2 pro-
vides two new kinds of statements. First, a declaration statement creates a variable. Second, an
assignment statement provides a value for that variable. Also, the program shows a new capa-
bility for cout.

LISTING 2.2 carrots.cpp

/| carrots.cpp -- food processing program
// uses and displays a variable

#include <iostream>

int main()

{
using namespace std;
int carrots; /| declare an integer variable
carrots = 25; // assign a value to the variable
cout << "I have ";
cout << carrots; // display the value of the variable

cout << " carrots.";

cout << endl;

carrots = carrots - 1; // modify the variable

cout << "Crunch, crunch. Now I have " << carrots <<
return 0;

carrots." << endl;

}

A blank line separates the declaration from the rest of the program. This practice is the usual C
convention, but its somewhat less common in C++. Here is the program output for Listing
2.2:

I have 25 carrots.
Crunch, crunch. Now I have 24 carrots.

The next few pages examine this program.

Declaration Statements and Variables

Computers are precise, orderly machines. To store an item of information in a computer, you
must identify both the storage location and how much memory storage space the information
requires. One relatively painless way to do this in C++ is to use a declaration statement to indi-
cate the type of storage and to provide a label for the location. For example, the program in
Listing 2.2 has this declaration statement (note the semicolon):

int carrots;

43

44

C++ PRIMER PLUS, FIFTH EDITION

This statement declares that the program uses enough storage to hold an integer, for which
C++ used the label int. The compiler takes care of the details of allocating and labeling mem-
ory for that task. C++ can handle several kinds, or types, of data, and the int is the most basic
data type. It corresponds to an integer, a number with no fractional part. The C++ int type
can be positive or negative, but the size range depends on the implementation. Chapter 3 pro-
vides the details on int and the other basic types.

Besides giving the type, the declaration statement declares that henceforth the program will
use the name carrots to identify the value stored at that location. Carrots is called a variable
because you can change its value. In C++ you must declare all variables. If you were to omit
the declaration in carrots.cpp, the compiler would report an error when the program
attempts to use carrots further on. (In fact, you might want to try omitting the declaration
just to see how your compiler responds. Then, if you see that response in the future, you'll
know to check for omitted declarations.)

Why Must Variables Be Declared?

Some languages, notably BASIC, create a new variable whenever you use a new name, without the
aid of explicit declarations. That might seem friendlier to the user, and it is—in the short term. The
problem is that if you misspell the name of a variable, you inadvertently can create a new variable
without realizing it. That is, in BASIC, you can do something like the following:

CastleDark = 34
CastleDank = CastleDark + MoreGhosts

PRINT CastleDark

Because CastleDank is misspelled (the r was typed as an n), the changes you make to it leave
CastleDark unchanged. This kind of error can be hard to trace because it breaks no rules in BASIC.
However, in C++, CastleDark would be declared while the misspelled CastleDank would not be
declared. Therefore, the equivalent C++ code breaks the rule about the need to declare a variable for
you to use it, so the compiler catches the error and stomps the potential bug.

In general, then, a declaration indicates the type of data to be stored and the name the pro-
gram will use for the data thats stored there. In this particular case, the program creates a vari-
able called carrots in which it can store an integer. (See Figure 2.4.)

FIGURE 2.4 int carrots;
A variable declaration. —— J o

type of name of semicolon
data to variable marks end of
be stored statement

Chapter 2 e SETTING OUT TO C++ 45

The declaration statement in the program is called a defining declaration statement, or defini-
tion, for short. This means that its presence causes the compiler to allocate memory space for
the variable. In more complex situations, you can also have reference declarations. These tell

the computer to use a variable that has already been defined elsewhere. In general, a declara-
tion need not be a definition, but in this example it is.

If you're familiar with C or Pascal, you're already familiar with variable declarations. You also
might have a modest surprise in store for you. In C and Pascal, all variable declarations nor-
mally come at the very beginning of a function or procedure. But C++ has no such restriction.
Indeed, the usual C++ style is to declare a variable just before it is first used. That way, you
don’t have to rummage back through a program to see what the type is. You'll see an example
of this later in this chapter. This style does have the disadvantage of not gathering all your vari-
able names in one place; thus, you can’t tell at a glance what variables a function uses.
(Incidentally, C99 now makes the rules for C declarations much the same as for C++.)

Tip

The C++ style for declaring variables is to declare a variable as close to its first use as possible.

Assignment Statements
An assignment statement assigns a value to a storage location. For example, the statement

carrots = 25;

assigns the integer 25 to the location represented by the variable carrots. The = symbol is
called the assignment operator. One unusual feature of C++ (and C) is that you can use the
assignment operator serially. For example, the following is valid code:

int steinway;

int baldwin;

int yamaha;

yamaha = baldwin = steinway = 88;

The assignment works from right to left. First, 88 is assigned to steinway; then the value of
steinway, which is now 88, is assigned to baldwin; then baldwin’s value of 88 is assigned to
yamaha. (C++ follows C’s penchant for allowing weird-appearing code.)

The second assignment statement in Listing 2.2 demonstrates that you can change the value of
a variable:

carrots = carrots - 1; // modify the variable
The expression to the right of the assignment operator (carrots - 1) is an example of arith-

metic. The computer will subtract 1 from 25, the value of carrots, obtaining 24. The assign-
ment operator then stores this new value in the carrots location.

46

C++ PRIMER PLUS, FIFTH EDITION

A New Trick for cout

Up until now, the examples in this chapter have given cout strings to print. Listing 2.2 also
gives cout a variable whose value is an integer:

cout << carrots;

The program doesn't print the word carrots; instead, it prints the integer value stored in car-
rots, which is 25. Actually, this is two tricks in one. First, cout replaces carrots with its cur-
rent numeric value of 25. Second, it translates the value to the proper output characters.

As you can see, cout works with both strings and integers. This might not seem particularly
remarkable to you, but keep in mind that the integer 25 is something quite different from the
string "25". The string holds the characters with which you write the number (that is, a 2
character and a 5 character). The program internally stores the code for the 2 character and
the 5 character. To print the string, cout simply prints each character in the string. But the
integer 25 is stored as a numeric value. Rather than store each digit separately, the computer
stores 25 as a binary number. (Appendix A, “Number Bases,” discusses this representation.)
The main point here is that cout must translate a number in integer form into character form
before it can print it. Furthermore, cout is smart enough to recognize that carrots is an inte-
ger that requires conversion.

Perhaps the contrast with old C will indicate how clever cout is. To print the string "25" and
the integer 25 in C, you could use C’s multipurpose output function printf():

printf("Printing a string: %s\n", "25");
printf("Printing an integer: %d\n", 25);

Without going into the intricacies of printf (), note that you must use special codes (%s and
%d) to indicate whether you are going to print a string or an integer. And if you tell printf ()
to print a string but give it an integer by mistake, printf () is too unsophisticated to notice
your mistake. It just goes ahead and displays garbage.

The intelligent way in which cout behaves stems from C++%s object-oriented features. In
essence, the C++ insertion operator (<<) adjusts its behavior to fit the type of data that follows
it. This is an example of operator overloading. In later chapters, when you take up function
overloading and operator overloading, you'll learn how to implement such smart designs your-
self.

cout and printf()

If you are used to C and printf (), you might think cout looks odd. You might even prefer to cling
to your hard-won mastery of printf (). But cout actually is no stranger in appearance than
printf (), with all its conversion specifications. More importantly, cout has significant advantages.
Its capability to recognize types reflects a more intelligent and foolproof design. Also, it is extensible.
That is, you can redefine the << operator so that cout can recognize and display new data types you
develop. And if you relish the fine control printf () provides, you can accomplish the same effects
with more advanced uses of cout (see Chapter 17, “Input, Output, and Files”).

Chapter 2 e SETTING OUT TO C++ 47

More C++ Statements

Let’s look at a couple more examples of statements. The program in Listing 2.3 expands on the
preceding example by allowing you to enter a value while the program is running. To do so, it
uses cin (pronounced “see-in”), the input counterpart to cout. Also, the program shows yet
another way to use that master of versatility, the cout object.

LISTING 2.3 getinfo.cpp

/] getinfo.cpp -- input and output
#include <iostream>

int main()

{

using namespace std;
int carrots;

cout << "How many carrots do you have?" << endl;
cin >> carrots; /] C++ input
cout << "Here are two more. ";
carrots = carrots + 2;

// the next line concatenates output
cout << "Now you have " << carrots <<

return 0;

carrots." << endl;

}
Here is an example of output from the program in Listing 2.3:

How many carrots do you have?
12
Here are two more. Now you have 14 carrots.

The program has two new features: using cin to read keyboard input and combining four out-
put statements into one. Let’s take a look.

Using cin
As the output from Listing 2.3 demonstrates, the value typed from the keyboard (12) is even-
tually assigned to the variable carrots. The following statement performs that wonder:

cin >> carrots;

Looking at this statement, you can practically see information flowing from cin into carrots.
Naturally, there is a slightly more formal description of this process. Just as C++ considers out-
put to be stream of characters flowing out of the program, it considers input to be stream of
characters flowing into the program. The iostrean file defines cin as an object that represents
this stream. For output, the << operator inserts characters into the output stream. For input,
cin uses the >> operator to extract characters from the input stream. Typically, you provide a
variable to the right of the operator to receive the extracted information. (The symbols << and
>> were chosen to visually suggest the direction in which information flows.)

48

C++ PRIMER PLUS, FIFTH EDITION

Like cout, cin is a smart object. It converts input, which is just a series of characters typed
from the keyboard, into a form acceptable to the variable receiving the information. In this
case, the program declares carrots to be an integer variable, so the input is converted to the
numeric form the computer uses to store integers.

Concatenating with cout

The second new feature of getinfo.cpp is combining four output statements into one. The
iostrean file defines the << operator so that you can combine (that is, concatenate) output as
follows:

cout << "Now you have " << carrots << " carrots." << endl;
This allows you to combine string output and integer output in a single statement. The result-
ing output is the same as what the following code produces:

cout << "Now you have ";
cout << carrots;

cout << " carrots";

cout << endl;

While you're still in the mood for cout advice, you can also rewrite the concatenated version
this way, spreading the single statement over four lines:

cout << "Now you have "
<< carrots
<< " carrots."
<< endl;

That’s because C++5 free format rules treat newlines and spaces between tokens interchange-
ably. This last technique is convenient when the line width cramps your style.

Another point to note is that
Now you have 14 carrots.
appears on the same line as

Here are two more.

That’s because, as noted before, the output of one cout statement immediately follows the out-
put of the preceding cout statement. This is true even if there are other statements in between.

cin and cout: A Touch of Class

You've seen enough of cin and cout to justify your exposure to a little object lore. In particu-
lar, in this section you'll learn more about the notion of classes. As Chapter 1 outlined briefly,
classes are one of the core concepts for object-oriented programming (OOP) in C++.

A class is a data type the user defines. To define a class, you describe what sort of information
it can represent and what sort of actions you can perform with that data. A class bears the
same relationship to an object that a type does to a variable. That is, a class definition
describes a data form and how it can be used, whereas an object is an entity created according

Chapter 2 o SETTING OUT TO C++

to the data form specification. Or, in noncomputer terms, if a class is analogous to a category
such as famous actors, then an object is analogous to a particular example of that category,
such as Kermit the Frog. To extend the analogy, a class representation of actors would include
definitions of possible actions relating to the class, such as Reading for a Part, Expressing
Sorrow, Projecting Menace, Accepting an Award, and the like. If you've been exposed to differ-
ent OOP terminology, it might help to know that the C++ class corresponds to what some lan-
guages term an object type, and the C++ object corresponds to an object instance or instance
variable.

Now let’s get a little more specific. Recall the following declaration of a variable:

int carrots;

This creates a particular variable (carrots) that has the properties of the int type. That is,
carrots can store an integer and can be used in particular ways—for addition and subtrac-
tion, for example. Now consider cout. It is an object created to have the properties of the
ostream class. The ostream class definition (another inhabitant of the iostrean file) describes
the sort of data an ostream object represents and the operations you can perform with and to
it, such as inserting a number or string into an output stream. Similarly, cin is an object cre-
ated with the properties of the istream class, also defined in iostream.

Remember

The class describes all the properties of a data type, and an object is an entity created according to
that description.

You have learned that classes are user-defined types, but as a user, you certainly didn’t design
the ostream and istream classes. Just as functions can come in function libraries, classes can
come in class libraries. That’s the case for the ostream and istream classes. Technically, they
are not built in to the C++ language; instead, they are examples of classes that happen to come
with the language. The class definitions are laid out in the iostreanm file and are not built into
the compiler. You can even modify these class definitions if you like, although thats not a good
idea. (More precisely, it is a truly dreadful idea.) The iostream family of classes and the related
fstream (or file I/O) family are the only sets of class definitions that came with all early imple-
mentations of C++. However, the ANSI/ISO C++ committee added a few more class libraries to
the Standard. Also, most implementations provide additional class definitions as part of the
package. Indeed, much of the current appeal of C++ is the existence of extensive and useful
class libraries that support Unix, Macintosh, and Windows programming.

The class description specifies all the operations that can be performed on objects of that class.
To perform such an allowed action on a particular object, you send a message to the object.
For example, if you want the cout object to display a string, you send it a message that says, in
effect, “Object! Display this!” C++ provides a couple ways to send messages. One way, using a
class method, is essentially a function call like the ones you'll see soon. The other way, which
is the one used with cin and cout, is to redefine an operator. Thus the statement

cout << "I am not a crook."

49

50

C++ PRIMER PLUS, FIFTH EDITION

uses the redefined << operator to send the “display message” to cout. In this case, the message

comes with an argument, which is the string to be displayed. (See Figure 2.5.)

FIGURE 2.5 #include <iostream>
Sending a message to an using namespace std;
. int main()
object. { print message
[message argument

cout << "Trust me";

) —— Trust me
cout object))
object displays argument

Functions

Because functions are the modules from which C++ programs are built and because they are
essential to C++ OOP definitions, you should become thoroughly familiar with them. Some
aspects of functions are advanced topics, so the main discussion of functions comes later, in
Chapters 7, “Functions: C++s Programming Modules,” and 8, “Adventures in Functions.”
However, if we deal now with some basic characteristics of functions, youll be more at ease
and more practiced with functions later. The rest of this chapter introduces you to these func-
tion basics.

C++ functions come in two varieties: those with return values and those without them. You
can find examples of each kind in the standard C++ library of functions, and you can create
your own functions of each type. Let’s look at a library function that has a return value and
then examine how you can write your own simple functions.

Using a Function That Has a Return Value

A function that has a return value produces a value that you can assign to a variable. For
example, the standard C/C++ library includes a function called sqrt () that returns the square
root of a number. Suppose you want to calculate the square root of 6.25 and assign it to the
variable x. You can use the following statement in your program:

x = sqrt(6.25); // returns the value 2.5 and assigns it to x
The expression sqrt (6.25) invokes, or calls, the sqrt () function. The expression

sqrt(6.25) is termed a function call, the invoked function is termed the called function, and
the function containing the function call is termed the calling function. (See Figure 2.6.)

Chapter 2 o SETTING OUT TO C++

FIGURE 2.6 Calling Function Called Function
Calling a function.
int main() code for sqrt()

{

o
X = sqrt(6+25); @ @
e T g e

The value in the parentheses (6.25, in this example) is information that is sent to the function;
it is said to be passed to the function. A value that is sent to a function this way is called an
argument or parameter. (See Figure 2.7.) The sqrt () function calculates the answer to be 2.5
and sends that value back to the calling function; the value sent back is called the return value
of the function. Think of the return value as what is substituted for the function call in the
statement after the function finishes its job. Thus, this example assigns the return value to the
variable x. In short, an argument is information sent to the function, and the return value is a
value sent back from the function.

FIGURE 2.7 argument -
) information
Function call syntax. passed to
function
function
name

semicolon marks

X = sqrt(6+25);«—— endof

T statement
opening
parenthesis
function return closing
value assigned parenthesis

to x

That’s practically all there is to it, except that before the C++ compiler uses a function, it must
know what kind of arguments the function uses and what kind of return value it has. That is,
does the function return an integer? a character? a number with a decimal fraction? a guilty
verdict? or something else? If it lacks this information, the compiler won’t know how to inter-
pret the return value. The C++ way to convey this information is to use a function prototype
statement.

Remember

A C++ program should provide a prototype for each function used in the program.

51

52

C++ PRIMER PLUS, FIFTH EDITION

A function prototype does for functions what a variable declaration does for variables: It tells
what types are involved. For example, the C++ library defines the sqrt() function to take a
number with (potentially) a fractional part (like 6.25) as an argument and to return a number
of the same type. Some languages refer to such numbers as real numbers, but the name C++
uses for this type is double. (You'll see more of double in Chapter 3.) The function prototype
for sqrt () looks like this:

double sqrt(double); // function prototype

The initial double means sqrt () returns a type double value. The double in the parentheses
means sqrt () requires a double argument. So this prototype describes sqrt () exactly as used
in the following code:

double x; // declare x as a type double variable
X = sqrt(6.25);

The terminating semicolon in the prototype identifies it as a statement and thus makes it a
prototype instead of a function header. If you omit the semicolon, the compiler interprets the
line as a function header and expects you to follow it with a function body that defines the
function.

When you use sqrt () in a program, you must also provide the prototype. You can do this in
either one of two ways:

* You can type the function prototype into your source code file yourself.

* You can include the cmath (math.h on older systems) header file, which has the proto-
type in it.

The second way is better because the header file is even more likely than you to get the proto-
type right. Every function in the C++ library has a prototype in one or more header files. Just
check the function description in your manual or with online help, if you have it, and the
description tells you which header file to use. For example, the description of the sqrt () func-
tion should tell you to use the cmath header file. (Again, you might have to use the older
math.h header file, which works for both C and C++ programs.)

Don'’t confuse the function prototype with the function definition. The prototype, as you've
seen, only describes the function interface. That is, it describes the information sent to the
function and the information sent back. The definition, however, includes the code for the
function’s workings—for example, the code for calculating the square root of a number. C and
C++ divide these two features—prototype and definition—for library functions. The library
files contain the compiled code for the functions, whereas the header files contain the proto-

types.

You should place a function prototype ahead of where you first use the function. The usual
practice is to place prototypes just before the definition of the main() function. Listing 2.4
demonstrates the use of the library function sqrt(); it provides a prototype by including the
cmath file.

Chapter 2 o SETTING OUT TO C++

LISTING 2.4 sqrt.cpp

/] sqrt.cpp -- using the sqrt() function

#include <iostream>
#include <cmath> // or math.h

int main()

{

using namespace std;

double area;
cout << "Enter the floor area, in square feet, of your home: ";
cin >> area;
double side;
side = sqrt(area);
cout << "That's the equivalent of a square " << side
<< " feet to the side." << endl;
cout << "How fascinating!" << endl;
return 0;

@ Compatibility Note

If you're using an older compiler, you might have to use #include <math.h> instead of #include
<cmath> in Listing 2.4.

Using Library Functions

C++ library functions are stored in library files. When the compiler compiles a program, it must
search the library files for the functions you've used. Compilers differ on which library files they
search automatically. If you try to run Listing 2.4 and get a message that _sqrt is an undefined
external (sounds like a condition to avoid!), chances are that your compiler doesn’t automatically
search the math library. (Compilers like to add an underscore prefix to function names—another sub-
tle reminder that they have the last say about your program.) If you get such a message, check your
compiler documentation to see how to have the compiler search the correct library. The usual Unix
implementations, for example, require that you use the -1m option (for /ibrary math) at the end of
the command line:

CC sqrt.C -1m

Using the Gnu compiler under Linux is similar:
g++ sqrt.C -1m

Merely including the cmath header file provides the prototype but does not necessarily cause the
compiler to search the correct library file.

53

54

C++ PRIMER PLUS, FIFTH EDITION

Here’s a sample run of the program in Listing 2.4:

Enter the floor area, in square feet, of your home: 1536
That's the equivalent of a square 39.1918 feet to the side.
How fascinating!

Because sqrt () works with type double values, the example makes the variables that type.
Note that you declare a type double variable by using the same form, or syntax, as when you
declare a type int variable:

type-name variable-name;

Type double allows the variables area and side to hold values with decimal fractions, such as
536.0 and 39.1918. An apparent integer, such as 536, is stored as a real value with a decimal
fraction part of .@ when stored in a type double variable. As you'll see in Chapter 3, type
double encompasses a much greater range of values than type int.

C++ allows you to declare new variables anywhere in a program, so sqrt.cpp didn't declare
side until just before using it. C++ also allows you to assign a value to a variable when you
create it, so you could also have done this:

double side = sqrt(area);
You'll learn more about this process, called initialization, in Chapter 3.

Note that cin knows how to convert information from the input stream to type double, and
cout knows how to insert type double into the output stream. As noted earlier, these objects
are smart.

Function Variations

Some functions require more than one item of information. These functions use multiple argu-
ments separated by commas. For example, the math function pow() takes two arguments and
returns a value equal to the first argument raised to the power given by the second argument.
It has this prototype:

double pow(double, double); // prototype of a function with two arguments

If, say, you wanted to find 5° (5 to eighth power), you would use the function like this:

answer = pow(5.0, 8.0); // function call with a list of arguments

Other functions take no arguments. For example, one of the C libraries (the one associated
with the cstdlib or the stdlib.h header file) has a rand() function that has no arguments
and that returns a random integer. Its prototype looks like this:

int rand(void); // prototype of a function that takes no arguments

The keyword void explicitly indicates that the function takes no arguments. If you omit void
and leave the parentheses empty, C++ interprets this as an implicit declaration that there are
no arguments. You could use the function this way:

myGuess = rand(); // function call with no arguments

Chapter 2 e SETTING OUT TO C++ 55

Note that, unlike some computer languages, in C++ you must use the parentheses in the func-
tion call even if there are no arguments.

There also are functions that have no return value. For example, suppose you wrote a function
that displayed a number in dollars-and-cents format. You could send to it an argument of, say,
23.5, and it would display $23.50 onscreen. Because this function sends a value to the screen
instead of to the calling program, it doesn’t return a value. You indicate this in the prototype
by using the keyword void for the return type:

void bucks(double); // prototype for function with no return value

Because bucks () doesn’t return a value, you can’t use this function as part of an assignment
statement or of some other expression. Instead, you have a pure function call statement:

bucks(1234.56); // function call, no return value

Some languages reserve the term function for functions with return values and use the terms
procedure or subroutine for those without return values, but C++, like C, uses the term function
for both variations.

User-Defined Functions

The standard C library provides more than 140 predefined functions. If one fits your needs, by
all means use it. But often you have to write your own, particularly when you design classes.
Anyway, it’s fun to design your own functions, so now let’s examine that process. You've
already used several user-defined functions, and they have all been named main(). Every C++
program must have a main() function, which the user must define. Suppose you want to add a
second user-defined function. Just as with a library function, you can call a user-defined func-
tion by using its name. And, as with a library function, you must provide a function prototype
before using the function, which you typically do by placing the prototype above the main()
definition. The new element is that you also must provide the source code for the new func-
tion. The simplest way is to place the code in the same file, after the code for main(). Listing
2.5 illustrates these elements.

LISTING 2.5 ourfunc.cpp

// ourfunc.cpp -- defining your own function
#include <iostream>

void simon(int); // function prototype for simon()
int main()
{

using namespace std;

simon(3); // call the simon() function

cout << "Pick an integer: ";

int count;

cin >> count;

simon(count); // call it again

cout << "Done!" << endl;

56

C++ PRIMER PLUS, FIFTH EDITION

LISTING 2.5 Continued

return 0;
}
void simon(int n) // define the simon() function
{
using namespace std;
cout << "Simon says touch your toes " << n << " times." << endl;
} // void functions don't need return statements

The main () function calls the simon() function twice, once with an argument of 3 and once
with a variable argument count. In between, the user enters an integer that’s used to set the
value of count. The example doesn’t use a newline character in the cout prompting message.
This results in the user input appearing on the same line as the prompt. Here is a sample run
of the program in Listing 2.5:

Simon says touch your toes 3 times.
Pick an integer: 512

Simon says touch your toes 512 times.
Done!

Function Form

The definition for the simon() function in Listing 2.5 follows the same general form as the
definition for main (). First, there is a function header. Then, enclosed in braces, comes the
function body. You can generalize the form for a function definition as follows:

type functionname(argumentlist)

{
}

Note that the source code that defines simon() follows the closing brace of main(). Like C,
and unlike Pascal, C++ does not allow you to embed one function definition inside another.
Each function definition stands separately from all others; all functions are created equal. (See
Figure 2.8.)

statements

Function Headers

The simon() function in Listing 2.5 has this header:
void simon(int n)

The initial void means that simon() has no return value. So calling simon() doesn't produce a
number that you can assign to a variable in main (). Thus, the first function call looks like this:

simon(3); // ok for void functions

Because poor simon() lacks a return value, you can't use it this way:

simple = simon(3); // not allowed for void functions

Chapter 2 o SETTING OUT TO C++

FIGURE 2.8 #include <iostream>

Function definitions
occur sequentially in a function

file.

using namespace std;

void simon(int);

prototypes double taxes(double);

int main()
function #1 {
return 0;

v01d simon(int n)

function #2

double taxes(double t)
{
function #3 e
return 2 * t;

}

The int n within the parentheses means that you are expected to use simon() with a single

argument of type int. The n is a new variable assigned the value passed during a function call.

Thus, the function call
simon(3);

assigns the value 3 to the n variable defined in the simon() header. When the cout statement
in the function body uses n, it uses the value passed in the function call. That’s why simon(3)
displays a 3 in its output. The call to simon(count) in the sample run causes the function to
display 512 because that’s the value given to count. In short, the header for simon() tells you
that this function takes a single type int argument and that it doesn't have a return value.

Let’s review main()’s function header:

int main()

The initial int means that main() returns an integer value. The empty parentheses (which,
optionally, could contain void) means that main() has no arguments. Functions that have
return values should use the keyword return to provide the return value and to terminate the
function. That’s why you've been using the following statement at the end of main():

return 0;

This is logically consistent: main() is supposed to return a type int value, and you have it
return the integer 0. But, you might wonder, to what are you returning a value? After all,
nowhere in any of your programs have you seen anything calling main():

squeeze = main(); // absent from our programs
The answer is that you can think of your computer’s operating system (Unix, say, or DOS) as

calling your program. So main ()’ return value is returned not to another part of the program
but to the operating system. Many operating systems can use the program’s return value. For

57

58

C++ PRIMER PLUS, FIFTH EDITION

example, Unix shell scripts and DOS batch files can be designed to run programs and test their
return values, usually called exit values. The normal convention is that an exit value of zero
means the program ran successfully, whereas a nonzero value means there was a problem.
Thus, you can design a C++ program to return a nonzero value if, say, it fails to open a file.
You can then design a shell script or batch file to run that program and to take some alterna-
tive action if the program signals failure.

Keywords

Keywords are the vocabulary of a computer language. This chapter has used four C++ keywords:
int, void, return, and double. Because these keywords are special to C++, you can't use them for
other purposes. That is, you can’t use return as the name for a variable or double as the name of a
function. But you can use them as part of a name, as in painter (with its hidden int) or
return_aces. Appendix B, “C++ Reserved Words,” provides a complete list of C++ keywords.
Incidentally, main is not a keyword because it's not part of the language. Instead, it is the name of a
required function. You can use main as a variable name. (That can cause a problem in circumstances
too esoteric to describe here, and because it is confusing in any case, you'd best not.) Similarly, other
function names and object names are not keywords. However, using the same name, say cout, for
both an object and a variable in a program confuses the compiler. That is, you can use cout as a
variable name in a function that doesn’t use the cout object for output, but you can't use cout both
ways in the same function.

Using a User-Defined Function That Has a Return
Value

Let’s go one step further and write a function that uses the return statement. The main () func-
tion already illustrates the plan for a function with a return value: Give the return type in the
function header and use return at the end of the function body. You can use this form to solve
a weighty problem for those visiting the United Kingdom. In the United Kingdom, many bath-
room scales are calibrated in stone instead of in U.S. pounds or international kilograms. The
word stone is both singular and plural in this context. (The English language does lack the
internal consistency of, say, C++.) One stone is 14 pounds, and the program in Listing 2.6 uses
a function to make this conversion.

LISTING 2.6 convert.cpp

// convert.cpp -- converts stone to pounds
#include <iostream>
int stonetolb(int); // function prototype
int main()
{
using namespace std;
int stone;
cout << "Enter the weight in stone: ";
cin >> stone;
int pounds = stonetolb(stone);

cout << stone << " stone = ";

Chapter 2 e SETTING OUT TO C++ 59

LISTING 2.6 Continued

cout << pounds << " pounds." << endl;

return 0;
I3
int stonetolb(int sts)
{
return 14 * sts;
}

Here’s a sample run of the program in Listing 2.6:

Enter the weight in stone: 14
14 stone = 196 pounds.

In main(), the program uses cin to provide a value for the integer variable stone. This value is
passed to the stonetolb() function as an argument and is assigned to the variable sts in that
function. stonetolb() then uses the return keyword to return the value of 14 * sts to

main (). This illustrates that you aren’t limited to following return with a simple number.
Here, by using a more complex expression, you avoid the bother of having to create a new
variable to which to assign the value before returning it. The program calculates the value of
that expression (196 in this example) and returns the resulting value. If returning the value of
an expression bothers you, you can take the longer route:

int stonetolb(int sts)

{
int pounds = 14 * sts;
return pounds;

}

Both versions produce the same result, but the second version takes slightly longer to do so.

In general, you can use a function with a return value wherever you would use a simple con-
stant of the same type. For example, stonetolb() returns a type int value. This means you
can use the function in the following ways:

int aunt = stonetolb(20);

int aunts = aunt + stonetolb(10);
cout << "Ferdie weighs " << stonetolb(16) << " pounds." << endl;

In each case, the program calculates the return value and then uses that number in these state-
ments.

As these examples show, the function prototype describes the function interface—that is, how
the function interacts with the rest of the program. The argument list shows what sort of infor-
mation goes into the function, and the function type shows the type of value returned.
Programmers sometimes describe functions as black boxes (a term from electronics) specified
by the flow of information into and out of them. The function prototype perfectly portrays that
point of view. (See Figure 2.9.)

60

C++ PRIMER PLUS, FIFTH EDITION

FIGURE 2.9 int stonetolb(int);
The function prototype § %, 2,
and the function as a oy s % 0’9'
. (74
black box. S °.%.
S)
O c <
SRS % %
£ < o
>
stonetolb() AR
196

The stonetolb() function is short and simple, yet it embodies a full range of functional fea-
tures:

¢ It has a header and a body.
* It accepts an argument.

e It returns a value.

e It requires a prototype.

Consider stonetolb() as a standard form for function design. You'll further explore functions
in Chapters 7 and 8. In the meantime, the material in this chapter should give you a good feel
for how functions work and how they fit into C++.

Placing the using Directive in Multifunction Programs
Notice that Listing 2.5 places a using directive in each of the two functions:
using namespace std;

This is because each function uses cout and thus needs access to the cout definition from the
std namespace.

There’s another way to make the std namespace available to both functions in Listing 2.5, and
that’s to place the directive outside and above both functions:

// ourfunci.cpp - repositioning the using directive

#include <iostream>

using namespace std; // affects all function definitions in this file
void simon(int);

int main()

{
simon(3);
cout << "Pick an integer: ";
int count;

cin >> count;
simon(count);

Chapter 2 o SETTING OUT TO C++

cout << "Done!" << endl;

return 0;
}
void simon(int n)
{
cout << "Simon says touch your toes " << n << " times." << endl;
}

The current prevalent philosophy is that it’s preferable to be more discriminating and limit
access to the std namespace to only those functions that need access. For example, in Listing
2.6, only main() uses cout, so there is no need to make the std namespace available to the
stonetolb() function. Thus, the using directive is placed inside the main() function only,
limiting std namespace access to just that function.

In summary, you have several choices for making std namespace elements available to a pro-
gram. Here are some:

* You can place

using std namespace;

above the function definitions in a file, making all the contents of the std namespace
available to every function in the file.

* You can place

using std namespace;

in a specific function definition, making all the contents of the std namespace available
to that specific function.

¢ Instead of using
using std namespace;
you can place directives like
using std::cout;

in a specific function definition and make a particular element, such as cout, available to
that function.

* You can omit the using directives entirely and use the std: : prefix whenever you use
elements from the std namespace:

std::cout << "I'm using cout and endl from the std namespace" << std::endl;

Real-World Note: Naming Conventions

('tmr\/

C++ programmers are blessed (or cursed) with myriad options when naming functions, classes, and
variables. Programmers have strong and varied opinions about style, and these often surface as holy
wars in public forums. Starting with the same basic idea for a function name, a programmer might

select any of the following:

61

62

C++ PRIMER PLUS, FIFTH EDITION

MyFunction()
myfunction()
myFunction()
my_function()
my_funct()

The choice will depend on the development team, the idiosyncrasies of the technologies or libraries
used, and the tastes and preferences of the individual programmer. Rest assured that all legal styles
are correct, as far as the C++ language is concerned, and can be used based on your own judgment.

Language allowances aside, it is worth noting that a personal naming style—one that aids you
through consistency and precision—is well worth pursuing. A precise, recognizable personal naming
convention is a hallmark of good software engineering, and it will aid you throughout your program-
ming career.

Summary

A C++ program consists of one or more modules called functions. Programs begin executing at
the beginning of the function called main() (all lowercase), so you should always have a func-
tion by this name. A function, in turn, consists of a header and a body. The function header
tells you what kind of return value, if any, the function produces and what sort of information
it expects arguments to pass to it. The function body consists of a series of C++ statements
enclosed in paired braces ({}).

C++ statement types include the following:

Declaration statement—A declaration statement announces the name and the type of a
variable used in a function.

Assignment statement—An assignment statement uses the assignment operator (=) to
assign a value to a variable.

Message statement—A message statement sends a message to an object, initiating some
sort of action.

Function call—A function call activates a function. When the called function termi-
nates, the program returns to the statement in the calling function immediately following
the function call.

Function prototype—A function prototype declares the return type for a function,
along with the number and type of arguments the function expects.

Return statement—A return statement sends a value from a called function back to the
calling function.

A class is a user-defined specification for a data type. This specification details how informa-
tion is to be represented and also the operations that can be performed with the data. An
object is an entity created according to a class prescription, just as a simple variable is an entity
created according to a data type description.

Chapter 2 e SETTING OUTTO C++ 63

C++ provides two predefined objects (cin and cout) for handling input and output. They are
examples of the istream and ostream classes, which are defined in the iostream file. These
classes view input and output as streams of characters. The insertion operator (<<), which is
defined for the ostream class, lets you insert data into the output stream, and the extraction
operator (>>), which is defined for the istream class, lets you extract information from the
input stream. Both cin and cout are smart objects, capable of automatically converting infor-
mation from one form to another according to the program context.

C++ can use the extensive set of C library functions. To use a library function, you should
include the header file that provides the prototype for the function.

Now that you have an overall view of simple C++ programs, you can go on in the next chap-
ters to fill in details and expand horizons.

Review Questions

You can find the answers to the review questions at the end of each chapter in Appendix J,
“Answers to Review Questions.”

1. What are the modules of C++ programs called?

2. What does the following preprocessor directive do?

#include <iostream>

3. What does the following statement do?

using namespace std;

4. What statement would you use to print the phrase “Hello, world” and then start a new
line?

5. What statement would you use to create an integer variable with the name cheeses?
6. What statement would you use to assign the value 32 to the variable cheeses?

7. What statement would you use to read a value from keyboard input into the variable
cheeses?

8. What statement would you use to print “We have X varieties of cheese,” where the cur-
rent value of the cheeses variable replaces X?

9. What do the following function prototypes tell you about the functions?

int froop(double t);
void rattle(int n);
int prune(void);

10. When do you not have to use the keyword return when you define a function?

64

C++ PRIMER PLUS, FIFTH EDITION

Programming Exercises

1.
2.

Write a C++ program that displays your name and address.

Write a C++ program that asks for a distance in furlongs and converts it to yards. (One
furlong is 220 yards.)

Write a C++ program that uses three user-defined functions (counting main() as one)
and produces the following output:

Three blind mice
Three blind mice
See how they run
See how they run

One function, called two times, should produce the first two lines, and the remaining
function, also called twice, should produce the remaining output.

Write a program that has main () call a user-defined function that takes a Celsius temper-
ature value as an argument and then returns the equivalent Fahrenheit value. The pro-
gram should request the Celsius value as input from the user and display the result, as
shown in the following code:

Please enter a Celsius value: 20
20 degrees Celsius is 68 degrees Fahrenheit.

For reference, here is the formula for making the conversion:
Fahrenheit = 1.8 x degrees Celsius + 32.0

Write a program that has main() call a user-defined function that takes a distance in
light years as an argument and then returns the distance in astronomical units. The pro-
gram should request the light year value as input from the user and display the result, as
shown in the following code:

Enter the number of light years: 4.2
4.2 light years = 265608 astronomical units.

An astronomical unit is the average distance from the earth to the sun (about
150,000,000 km or 93,000,000 miles), and a light year is the distance light travels in a
year (about 10 trillion kilometers or 6 trillion miles). (The nearest star after the sun is
about 4.2 light years away.) Use type double (as in Listing 2.4) and this conversion
factor:

1 light year = 63,240 astronomical units

Write a program that asks the user to enter an hour value and a minute value. The

main () function should then pass these two values to a type void function that displays
the two values in the format shown in the following sample run:

Enter the number of hours: 9

Enter the number of minutes: 28
Time: 9:28

CHAPTER 3

DEALING WITH DATA

In this chapter you’ll learn about the following:

Rules for naming C++ variables

C++'s built-in integer types:
unsigned long, long, unsigned
int, int, unsigned short, short,
char, unsigned char, signed
char, and bool

The climits file, which represents
system limits for various integer

types

Numeric constants of various inte-
ger types

Using the const qualifier to create
symbolic constants

e C++'s built-in floating-point types:
float, double, and long double

e The cfloat file, which represents
system limits for various floating-
point types

e Numeric constants of various
floating-point types

e C++'s arithmetic operators
e Automatic type conversions

e Forced type conversions (type
casts)

he essence of object-oriented programming (OOP) is designing and extending your
own data types. Designing your own data types represents an effort to make a type
match the data. If you do this properly, you'll find it much simpler to work with the
data later. But before you can create your own types, you must know and understand the types
that are built in to C++ because those types will be your building blocks.

The built-in C++ types come in two groups: fundamental types and compound types. In this
chapter you’ll meet the fundamental types, which represent integers and floating-point num-
bers. That might sound like just two types; however, C++ recognizes that no one integer type
and no one floating-point type match all programming requirements, so it offers several vari-
ants on these two data themes. Chapter 4, “Compound Types,” follows up by covering several
types that are built on the basic types; these additional compound types include arrays,
strings, pointers, and structures.

66 C++ PRIMER PLUS, FIFTH EDITION

Of course, a program also needs a means to identify stored data. In this chapter you'll examine
one method for doing so—using variables. Then, you'll look at how to do arithmetic in C++.
Finally, you'll see how C++ converts values from one type to another.

Simple Variables

Programs typically need to store information—perhaps the current price of IBM stock, the
average humidity in New York City in August, the most common letter in the U.S.
Constitution and its relative frequency, or the number of available Elvis impersonators. To store
an item of information in a computer, the program must keep track of three fundamental prop-
erties:

e Where the information is stored
* What value is kept there
e What kind of information is stored

The strategy the examples in this book have used so far is to declare a variable. The type used
in the declaration describes the kind of information, and the variable name represents the
value symbolically. For example, suppose Chief Lab Assistant Igor uses the following state-
ments:

int braincount;
braincount = 5;

These statements tell the program that it is storing an integer and that the name braincount
represents the integer’s value, 5 in this case. In essence, the program locates a chunk of mem-
ory large enough to hold an integer, notes the location, assigns the label braincount to the
location, and copies the value 5 into the location. These statements don't tell you (or Igor)
where in memory the value is stored, but the program does keep track of that information, too.
Indeed, you can use the & operator to retrieve braincount’s address in memory. You'll learn
about that operator in the next chapter, when you investigate a second strategy for identifying
data—using pointers.

Names for Variables

C++ encourages you to use meaningful names for variables. If a variable represents the cost of
a trip, you should call it cost_of_trip or costOfTrip, not just x or cot. You do have to fol-
low a few simple C++ naming rules:

 The only characters you can use in names are alphabetic characters, numeric digits, and
the underscore (_) character.

* The first character in a name cannot be a numeric digit.
o Uppercase characters are considered distinct from lowercase characters.

* You can't use a C++ keyword for a name.

Chapter 3 ¢ DEALING WITH DATA

* Names beginning with two underscore characters or with an underscore character fol-
lowed by an uppercase letter are reserved for use by the implementation—that is, the
compiler and the resources it uses. Names beginning with a single underscore character
are reserved for use as global identifiers by the implementation.

o C++ places no limits on the length of a name, and all characters in a name are signifi-
cant.

The next-to-last point is a bit different from the preceding points because using a name such as
__time_stop or _Donut doesn't produce a compiler error; instead, it leads to undefined behav-
ior. In other words, there’s no telling what the result will be. The reason there is no compiler
error is that the names are not illegal but rather are reserved for the implementation to use.
The bit about global names refers to where the names are declared; Chapter 4 touches on that
topic.

The final point differentiates C++ from ANSI C (C99), which guarantees only that the first 63
characters in a name are significant. (In ANSI C, two names that have the same first 63 charac-
ters are considered identical, even if the 64th characters differ.)

Here are some valid and invalid C++ names:

int poodle; // valid

int Poodle; // valid and distinct from poodle

int POODLE; // valid and even more distinct

Int terrier; // invalid -- has to be int, not Int

int my_stars3 // valid

int _Mystars3; // valid but reserved -- starts with underscore
int 4ever; // invalid because starts with a digit

int double; // invalid -- double is a C++ keyword

int begin; // valid -- begin is a Pascal keyword

int _ fools; // valid but reserved - starts with two underscores
int the_very_best_variable_i_can_be_version_112; // valid

int honky-tonk; // invalid -- no hyphens allowed

If you want to form a name from two or more words, the usual practice is to separate the
words with an underscore character, as in my_onions, or to capitalize the initial character of
each word after the first, as in myEyeTooth. (C veterans tend to use the underscore method in
the C tradition, whereas Pascalians prefer the capitalization approach.) Either form makes it
easier to see the individual words and to distinguish between, say, carDrip and cardRip, or
boat_sport and boats_port.

Real-World Note: Variable Names

Schemes for naming variables, like schemes for naming functions, provide fertile ground for fervid
discussion. Indeed, this topic produces some of the most strident disagreements in programming.
Again, as with function names, the C++ compiler doesn’t care about your variable names as long as
they are within legal limits, but a consistent, precise personal naming convention will serve you well.

@

As in function naming, capitalization is a key issue in variable naming (see the sidebar “Naming
Conventions” in Chapter 2, “Setting Out to C++"), but many programmers may insert an additional
level of information in a variable name—a prefix that describes the variable’s type or contents. For
instance, the integer myWeight might be named nMyweight; here, the n prefix is used to represent

67

68

C++ PRIMER PLUS, FIFTH EDITION

an integer value, which is useful when you are reading code and the definition of the variable isn't
immediately at hand. Alternatively, this variable might be named intMyWeight, which is more pre-
cise and legible, although it does include a couple extra letters (anathema to many programmers).
Other prefixes are commonly used in like fashion: str or sz might be used to represent a null-
terminated string of characters, b might represent a Boolean value, p a pointer, ¢ a single character.

As you progress into the world of C++, you will find many examples of the prefix naming style
(including the handsome m_1pctstr prefix—a class member value that contains a long pointer to a
constant, null-terminated string of characters), as well as other, more bizarre and possibly counterin-
tuitive styles that you may or may not adopt as your own. As in all the stylistic, subjective parts of
C++, consistency and precision are best. You should use variable names to fit your own needs, pref-
erences, and personal style. (Or, if required, choose names that fit the needs, preferences, and per-
sonal style of your employer.)

Integer Types

Integers are numbers with no fractional part, such as 2, 98, 5286, and 0. There are lots of
integers, assuming that you consider an infinite number to be a lot, so no finite amount of
computer memory can represent all possible integers. Thus, a language can represent only a
subset of all integers. Some languages, such as standard Pascal, offer just one integer type (one
type fits all!), but C++ provides several choices. This gives you the option of choosing the inte-
ger type that best meets a program’ particular requirements. This concern with matching type
to data presages the designed data types of OOP.

The various C++ integer types differ in the amount of memory they use to hold an integer. A
larger block of memory can represent a larger range in integer values. Also, some types (signed
types) can represent both positive and negative values, whereas others (unsigned types) can't
represent negative values. The usual term for describing the amount of memory used for an
integer is width. The more memory a value uses, the wider it is. C++ basic integer types, in
order of increasing width, are char, short, int, and long. Each comes in both signed and
unsigned versions. That gives you a choice of eight different integer types! Let’s look at these
integer types in more detail. Because the char type has some special properties (it’s most often
used to represent characters instead of numbers), this chapter covers the other types first.

The short, int, and long Integer Types

Computer memory consists of units called bits. (See the “Bits and Bytes” sidebar, later in this
chapter.) By using different numbers of bits to store values, the C++ types short, int, and
long can represent up to three different integer widths. It would be convenient if each type
were always some particular width for all systems—for example, if short were always 16 bits,
int were always 32 bits, and so on. But life is not that simple. However, no one choice is suit-
able for all computer designs. C++ offers a flexible standard with some guaranteed minimum
sizes, which it takes from C. Here’s what you get:

* A short integer is at least 16 bits wide.
* An int integer is at least as big as short.

* A long integer is at least 32 bits wide and at least as big as int.

Chapter 3 ¢ DEALING WITH DATA

Bits and Bytes

The fundamental unit of computer memory is the bit. Think of a bit as an electronic
switch that you can set to either off or on. Off represents the value 0, and on represents
the value 1. An 8-bit chunk of memory can be set to 256 different combinations. The
number 256 comes from the fact that each bit has two possible settings, making the total
number of combinations for 8 bits 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2, or 256. Thus, an 8-bit
unit can represent, say, the values 0 through 255 or the values —128 through 127. Each
additional bit doubles the number of combinations. This means you can set a 16-bit unit
to 65,536 different values and a 32-bit unit to 4,294,672,296 different values.

A byte usually means an 8-bit unit of memory. Byte in this sense is the unit of measurement that
describes the amount of memory in a computer, with a kilobyte equal to 1,024 bytes and a
megabyte equal to 1,024 kilobytes. However, C++ defines byte differently. The C++ byte consists of
at least enough adjacent bits to accommodate the basic character set for the implementation. That
is, the number of possible values must equal or exceed the number of distinct characters. In the
United States, the basic character sets are usually the ASCIl and EBCDIC sets, each of which can be
accommodated by 8 bits, so the C++ byte is typically 8 bits on systems using those character sets.
However, international programming can require much larger character sets, such as Unicode, so
some implementations may use a 16-bit byte or even a 32-bit byte.

Many systems currently use the minimum guarantee, making short 16 bits and long 32 bits.
This still leaves several choices open for int. It could be 16, 24, or 32 bits in width and meet
the standard. Typically, int is 16 bits (the same as short) for older IBM PC implementations
and 32 bits (the same as long) for Windows 98, Windows NT, Windows XP, Macintosh OS X,
VAX, and many other minicomputer implementations. Some implementations give you a
choice of how to handle int. (What does your implementation use? The next example shows
you how to determine the limits for your system without your having to open a manual.) The
differences between implementations for type widths can cause problems when you move a
C++ program from one environment to another. But a little care, as discussed later in this
chapter, can minimize those problems.

You use these type names to declare variables just as you would use int:

short score; /| creates a type short integer variable
int temperature; // creates a type int integer variable
long position; // creates a type long integer variable

Actually, short is short for short int and long is short for long int, but hardly anyone uses
the longer forms.

The three types, int, short, and long, are signed types, meaning each splits its range approxi-
mately equally between positive and negative values. For example, a 16-bit int might run
from -32,768 to +32,767.

If you want to know how your system’s integers size up, you can use C++ tools to investigate
type sizes with a program. First, the sizeof operator returns the size, in bytes, of a type or a
variable. (An operator is a built-in language element that operates on one or more items to
produce a value. For example, the addition operator, represented by +, adds two values.) Note
that the meaning of byte is implementation dependent, so a 2-byte int could be 16 bits on
one system and 32 bits on another. Second, the c1imits header file (or, for older

69

70

C++ PRIMER PLUS, FIFTH EDITION

implementations, the 1imits.h header file) contains information about integer type limits. In
particular, it defines symbolic names to represent different limits. For example, it defines
INT_MAX as the largest possible int value and CHAR_BIT as the number of bits in a byte. Listing
3.1 demonstrates how to use these facilities. The program also illustrates initialization,
which is the use of a declaration statement to assign a value to a variable.

LISTING 3.1 limits.cpp

// limits.cpp -- some integer limits

#include <iostream>

#include <climits> // use limits.h for older systems
int main()

{

using namespace std;

int n_int = INT_MAX; // initialize n_int to max int value
short n_short = SHRT_MAX; /| symbols defined in limits.h file
long n_long = LONG_MAX;

// sizeof operator yields size of type or of variable

cout << "int is " << sizeof (int) << " bytes." << endl;

cout << "short is " << sizeof n_short << " bytes." << endl;

cout << "long is " << sizeof n_long << " bytes." << endl << endl;

cout << "Maximum values:" << endl;

cout << "int: " << n_int << endl;

cout << "short: " << n_short << endl;

cout << "long: " << n_long << endl << endl;

cout << "Minimum int value = " << INT_MIN << endl;
cout << "Bits per byte = " << CHAR_BIT << endl;
return 0;

g Compatibility Note

The climits header file is the C++ version of the ANSI C 1imits.h header file. Some earlier C++
platforms have neither header file available. If you're using such a system, you must limit yourself to
experiencing this example in spirit only.

Here is the output from the program in Listing 3.1, using Microsoft Visual C++ 7.1:

int is 4 bytes.
short is 2 bytes.
long is 4 bytes.

Maximum values:
int: 2147483647
short: 32767
long: 2147483647

Minimum int value = -2147483648
Bits per byte = 8

Chapter 3 ¢ DEALING WITH DATA

Here is the output for a second system, running Borland C++ 3.1 for DOS:

int is 2 bytes.
short is 2 bytes.
long is 4 bytes.

Maximum values:
int: 32767
short: 32767
long: 2147483647

Minimum int value = -32768
Bits per byte = 8

Program Notes

The following sections look at the chief programming features for this program.

The sizeof Operator and the climits Header File

The sizeof operator reports that int is 4 bytes on the base system, which uses an 8-bit byte.
You can apply the sizeof operator to a type name or to a variable name. When you use the
sizeof operator with a type name, such as int, you enclose the name in parentheses. But
when you use the operator with the name of the variable, such as n_short, parentheses are
optional:

cout << "int is " << sizeof (int) << " bytes.\n";
cout << "short is " << sizeof n_short << " bytes.\n";

The climits header file defines symbolic constants (see the sidebar “Symbolic Constants the
Preprocessor Way,” later in this chapter) to represent type limits. As mentioned previously,
INT_MAX represents the largest value type int can hold; this turned out to be 32,767 for our
DOS system. The compiler manufacturer provides a climits file that reflects the values appro-
priate to that compiler. For example, the climits file for Windows XP, which uses a 32-bit
int, defines INT_MAX to represent 2,147,483,647. Table 3.1 summarizes the symbolic con-
stants defined in the climits file; some pertain to types you have not yet learned.

TABLE 3.1 Symbolic Constants from climits

Symbolic Constant Represents

CHAR_BIT Number of bits in a char
CHAR_MAX Maximum char value
CHAR_MAX Minimum char value
SCHAR_MAX Maximum signed char value
SCHAR_MIN Minimum signed char value

UCHAR_MAX Maximum unsigned char value

72

C++ PRIMER PLUS, FIFTH EDITION

TABLE 3.1 Continued

Symbolic Constant Represents

SHRT_MAX Maximum short value

SHRT_MIN Minimum short value

USHRT_MAX Maximum unsigned short value

INT_MAX Maximum int value

INT_MIN Minimum int value

UINT_MAX Maximum unsigned int value

LONG_MAX Maximum long value

LONG_MIN Minimum long value

ULONG_MAX Maximum unsigned long value
Initialization

Initialization combines assignment with declaration. For example, the statement
int n_int = INT_MAX;

declares the n_int variable and sets it to the largest possible type int value. You can also use regular
constants to initialize values. You can initialize a variable to another variable, provided that the
other variable has been defined first. You can even initialize a variable to an expression, pro-
vided that all the values in the expression are known when program execution reaches the

declaration:

int uncles = 5; // initialize uncles to 5
int aunts = uncles; // initialize aunts to 5
int chairs = aunts + uncles + 4; // initialize chairs to 14

Moving the uncles declaration to the end of this list of statements would invalidate the other
two initializations because then the value of uncles wouldnt be known at the time the pro-
gram tries to initialize the other variables.

The initialization syntax shown previously comes from C; C++ has a second initialization syn-
tax that is not shared with C:

int owls = 101; // traditional C initialization
int wrens(432); // alternative C++ syntax, set wrens to 432

Remember

If you don't initialize a variable that is defined inside a function, the variable’s value is undefined.
That means the value is whatever happened to be sitting at that memory location prior to the cre-
ation of the variable.

Chapter 3 ¢ DEALING WITH DATA 73

If you know what the initial value of a variable should be, initialize it. True, separating the
declaring of a variable from assigning it a value can create momentary suspense:

short year; // what could it be?
year = 1492; // oh

But initializing the variable when you declare it protects you from forgetting to assign the value
later.

Symbolic Constants the Preprocessor Way

The climits file contains lines similar to the following:
#define INT_MAX 32767

Recall that the C++ compilation process first passes the source code through a preprocessor. Here
#define, like #include, is a preprocessor directive. What this particular directive tells the preproces-
sor is this: Look through the program for instances of INT_MAX and replace each occurrence with
32767. So the #define directive works like a global search-and-replace command in a text editor or
word processor. The altered program is compiled after these replacements occur. The preprocessor
looks for independent tokens (separate words) and skips embedded words. That is, the preprocessor
doesn’t replace PINT_MAXIM with P32767IM. You can use #define to define your own symbolic con-
stants, too. (See Listing 3.2.) However, the #define directive is a C relic. C++ has a better way of
creating symbolic constants (using the const keyword, discussed in a later section), so you won't be
using #define much. But some header files, particularly those designed to be used with both C and
C++, do use it.

Unsigned Types

Each of the three integer types you just learned about comes in an unsigned variety that can’t
hold negative values. This has the advantage of increasing the largest value the variable can
hold. For example, if short represents the range —32,768 to +32,767, the unsigned version
can represent the range 0 to 65,535. Of course, you should use unsigned types only for quan-
tities that are never negative, such as populations, bean counts, and happy face manifestations.
To create unsigned versions of the basic integer types, you just use the keyword unsigned to
modify the declarations:

unsigned short change; // unsigned short type
unsigned int rovert; // unsigned int type
unsigned quarterback; // also unsigned int
unsigned long gone; // unsigned long type

Note that unsigned by itself is short for unsigned int.

Listing 3.2 illustrates the use of unsigned types. It also shows what might happen if your pro-
gram tries to go beyond the limits for integer types. Finally, it gives you one last look at the
preprocessor #define statement.

74 C++ PRIMER PLUS, FIFTH EDITION

LISTING 3.2 exceed.cpp

/| exceed.cpp -- exceeding some integer limits
#include <iostream>

#define ZERO 0 // makes ZERO symbol for @ value
#include <climits> // defines INT_MAX as largest int value
int main()

{

using namespace std;
short sam = SHRT_MAX; // initialize a variable to max value
unsigned short sue = sam;// okay if variable sam already defined

cout << "Sam has " << sam << " dollars and Sue has " << sue;
cout << " dollars deposited." << endl

<< "Add $1 to each account." << endl << "Now ";
sam = sam + 1;
sue = sue + 1;
cout << "Sam has " << sam << " dollars and Sue has " << sue;
cout << " dollars deposited.\nPoor Sam!" << endl;
sam = ZERO;
sue = ZERO;
cout << "Sam has " << sam << " dollars and Sue has " << sue;
cout << " dollars deposited." << endl;
cout << "Take $1 from each account." << endl << "Now ";
sam = sam - 1;
sue = sue - 1;
cout << "Sam has " << sam << " dollars and Sue has " << sue;
cout << " dollars deposited." << endl << "Lucky Sue!" << endl;
return 0;

Compatibility Note

Listing 3.2, like Listing 3.1, uses the climits file; older compilers might need to use 1imits.h, and
some very old compilers might not have either file available.

Here’s the output from the program in Listing 3.2:

Sam has 32767 dollars and Sue has 32767 dollars deposited.

Add $1 to each account.

Now Sam has -32768 dollars and Sue has 32768 dollars deposited.
Poor Sam!

Sam has 0 dollars and Sue has 0 dollars deposited.

Take $1 from each account.

Now Sam has -1 dollars and Sue has 65535 dollars deposited.
Lucky Sue!

The program sets a short variable (sam) and an unsigned short variable (sue) to the largest
short value, which is 32,767 on our system. Then, it adds 1 to each value. This causes no
problems for sue because the new value is still much less than the maximum value for an
unsigned integer. But sam goes from 32,767 to —32,768! Similarly, subtracting 1 from O creates
no problems for sam, but it makes the unsigned variable sue go from 0 to 65,535. As you can

Chapter 3 ¢ DEALING WITH DATA

see, these integers behave much like an odometer. If you go past the limit, the values just start
over at the other end of the range. (See Figure 3.1.) C++ guarantees that unsigned types
behave in this fashion. However, C++ doesn't guarantee that signed integer types can exceed
their limits (overflow and underflow) without complaint, but that is the most common behav-
ior on current implementations.

FIGURE 3.1 reset point
Typical overflow behavior w2767 12767
. - +
for integers. \l/
signed
-16384 — . — +16384
integer
| / increasing
1 / \ 1 size
0

+32768 +32767

unsigned
+49152 — . — +16364
integer
| / increasing
AN size
+65535 0 +1

!

reset point

ﬁ Beyond long

C99 has added a couple new types that most likely will be part of the next edition of the C++
Standard. Indeed, many C++ compilers already support them. The types are long long and
unsigned long long. Both are guaranteed to be at least 64 bits and to be at least as wide as the
long and unsigned long types.

Choosing an Integer Type

With the richness of C++ integer types, which should you use? Generally, int is set to the
most “natural” integer size for the target computer. Natural size refers to the integer form
that the computer handles most efficiently. If there is no compelling reason to choose another
type, you should use int.

Now look at reasons why you might use another type. If a variable represents something that
is never negative, such as the number of words in a document, you can use an unsigned type;
that way the variable can represent higher values.

75

76

FIGURE 3.2

For portability, use long /1 myprofit.cpp // myprofit.cpp

for big integers. int receipts = 560334; int receipts = 560334;
long also = 560334; long also = 560334;
cout << receipts << "\n"; cout << receipts << "\n";
cout << also << "\n"; cout << also << "\n";

C++ PRIMER PLUS, FIFTH EDITION

If you know that the variable might have to represent integer values too great for a 16-bit inte-
ger, you should use long. This is true even if int is 32 bits on your system. That way, if you
transfer your program to a system with a 16-bit int, your program won't embarrass you by
suddenly failing to work properly. (See Figure 3.2.)

(? %1)

560334 -29490
560334 560334
Type int worked on this computer. Type int failed on this computer.

Using short can conserve memory if short is smaller than int. Most typically, this is impor-
tant only if you have a large array of integers. (An array is a data structure that stores several
values of the same type sequentially in memory.) If it is important to conserve space, you
should use short instead of int, even if the two are the same size. Suppose, for example, that
you move your program from a 16-bit int DOS PC system to a 32-bit int Windows XP sys-
tem. That doubles the amount of memory needed to hold an int array, but it doesn't affect the
requirements for a short array. Remember, a bit saved is a bit earned.

If you need only a single byte, you can use char. We'll examine that possibility soon.

Integer Constants

An integer constant is one you write out explicitly, such as 212 or 1776. C++, like C, lets you
write integers in three different number bases: base 10 (the public favorite), base 8 (the old
Unix favorite), and base 16 (the hardware hacker’s favorite). Appendix A, “Number Bases,”

Chapter 3 ¢ DEALING WITH DATA 77

describes these bases; here we'll look at the C++ representations. C++ uses the first digit or two
to identify the base of a number constant. If the first digit is in the range 1-9, the number is
base 10 (decimal); thus 93 is base 10. If the first digit is O and the second digit is in the range
1-7, the number is base 8 (octal); thus 042 is octal and equal to 34 decimal. If the first two
characters are Ox or 0X, the number is base 16 (hexadecimal); thus 0x42 is hex and equal to
66 decimal. For hexadecimal values, the characters a—f and A-F represent the hexadecimal
digits corresponding to the values 10-15. OxF is 15 and 0xA5 is 165 (10 sixteens plus 5 ones).
Listing 3.3 is tailor-made to show the three bases.

LISTING 3.3 hexoct1.cpp

// hexocti.cpp -- shows hex and octal constants
#include <iostream>
int main()
{
using namespace std;
int chest = 42; /| decimal integer constant
int waist = 0x42; // hexadecimal integer constant
int inseam = 042; // octal integer constant

cout << "Monsieur cuts a striking figure!\n";

cout << "chest = " << chest << "\n";
cout << "waist = " << waist << "\n";
cout << "inseam = " << inseam << "\n";
return 0;

}

By default, cout displays integers in decimal form, regardless of how they are written in a pro-
gram, as the following output shows:

Monsieur cuts a striking figure!
chest = 42 (42 in decimal)

waist = 66 (0x42 in hex)

inseam = 34 (042 in octal)

Keep in mind that these notations are merely notational conveniences. For example, if you
read that the CGA video memory segment is BOOO in hexadecimal, you don’t have to convert
the value to base 10 45,056 before using it in your program. Instead, you can simply use
0xB000. But whether you write the value ten as 10, 012, or OxA, it’s stored the same way in
the computer—as a binary (base 2) value.

By the way, if you want to display a value in hexadecimal or octal form, you can use some spe-
cial features of cout. Recall that the iostream header file provides the end1 manipulator to
give cout the message to start a new line. Similarly, it provides the dec, hex, and oct manipu-
lators to give cout the messages to display integers in decimal, hexadecimal, and octal formats,
respectively. Listing 3.4 uses hex and oct to display the decimal value 42 in three formats.
(Decimal is the default format, and each format stays in effect until you change it.)

78

C++ PRIMER PLUS, FIFTH EDITION

LISTING 3.4 hexoct2.cpp

/] hexoct2.cpp -- display values in hex and octal
#include <iostream>
using namespace std;
int main()
{
using namespace std;
int chest = 42;
int waist = 42;
int inseam = 42;

cout << "Monsieur cuts a striking figure!" << endl;

cout << "chest = " << chest << " (decimal)" << endl;

cout << hex; // manipulator for changing number base
cout << "waist = " << waist << " hexadecimal" << endl;
cout << oct; // manipulator for changing number base
cout << "inseam = " << inseam << " (octal)" << endl;
return 0;

}

Here’s the program output for Listing 3.4:

Monsieur cuts a striking figure!
chest = 42 (decimal)

waist = 2a hexadecimal

inseam = 52 (octal)

Note that code like

cout << hex;

doesn’t display anything onscreen. Instead, it changes the way cout displays integers. Thus,
the manipulator hex is really a message to cout that tells it how to behave. Also note that
because the identifier hex is part of the std namespace and the program uses that namespace,
this program can't use hex as the name of a variable. However, if you omitted the using direc-
tive and instead used std: :cout, std::endl, std: :hex, and std: :oct, you could still use
plain hex as the name for a variable.

How C++ Decides What Type a Constant Is

A program’s declarations tell the C++ compiler the type of a particular integer variable. But
what about constants? That is, suppose you represent a number with a constant in a program:

cout << "Year = " << 1492 << "\n";

Does the program store 1492 as an int, a long, or some other integer type? The answer is that
C++ stores integer constants as type int unless there is a reason to do otherwise. Two such
reasons are if you use a special suffix to indicate a particular type or if a value is too large to be
an int.

Chapter 3 ¢ DEALING WITH DATA

First, look at the suffixes. These are letters placed at the end of a numeric constant to indicate
the type. An 1 or L suffix on an integer means the integer is a type long constant, a u or U suf-
fix indicates an unsigned int constant, and ul (in any combination of orders and uppercase
and lowercase) indicates a type unsigned long constant. (Because a lowercase 1 can look
much like the digit 1, you should use the uppercase L for suffixes.) For example, on a system
using a 16-bit int and a 32-bit long, the number 22022 is stored in 16 bits as an int, and the
number 22022L is stored in 32 bits as a long. Similarly, 22022LU and 22022UL are unsigned
long.

Next, look at size. C++ has slightly different rules for decimal integers than it has for hexadeci-
mal and octal integers. (Here decimal means base 10, just as hexadecimal means base 16; the
term decimal does not necessarily imply a decimal point.) A decimal integer without a suffix
is represented by the smallest of the following types that can hold it: int, long, or unsigned
long. On a computer system using a 16-bit int and a 32-bit long, 20000 is represented as
type int, 40000 is represented as long, and 3000000000 is represented as unsigned long. A
hexadecimal or octal integer without a suffix is represented by the smallest of the following
types that can hold it: int, unsigned int, long, or unsigned long. The same computer sys-
tem that represents 40000 as long represents the hexadecimal equivalent 0x9C40 as an
unsigned int. That’s because hexadecimal is frequently used to express memory addresses,
which intrinsically are unsigned. So unsigned int is more appropriate than long for a 16-bit
address.

The char Type: Characters and Small Integers

It time to turn to the final integer type: char. As you probably suspect from its name, the
char type is designed to store characters, such as letters and numeric digits. Now, whereas
storing numbers is no big deal for computers, storing letters is another matter. Programming
languages take the easy way out by using number codes for letters. Thus, the char type is
another integer type. It's guaranteed to be large enough to represent the entire range of basic
symbols—all the letters, digits, punctuation, and the like—for the target computer system. In
practice, most systems support fewer than 256 kinds of characters, so a single byte can repre-
sent the whole range. Therefore, although char is most often used to handle characters, you
can also use it as an integer type that is typically smaller than short.

The most common symbol set in the United States is the ASCII character set, described in
Appendix C, “The ASCII Character Set.” A numeric code (the ASCII code) represents each
character in the set. For example, 65 is the code for the character A, and 77 is the code for the
character M. For convenience, this book assumes ASCII code in its examples. However, a C++
implementation uses whatever code is native to its host system—for example, EBCDIC (pro-
nounced “eb-se-dik”) on an IBM mainframe. Neither ASCII nor EBCDIC serve international
needs that well, and C++ supports a wide-character type that can hold a larger range of values,
such as are used by the international Unicode character set. You'll learn about this wehar_t
type later in this chapter.

Try the char type in Listing 3.5.

79

80

C++ PRIMER PLUS, FIFTH EDITION

LISTING 3.5 chartype.cpp

// chartype.cpp -- the char type
#include <iostream>
int main()

{
using namespace std;
char ch; // declare a char variable
cout << "Enter a character: " << endl;
cin >> ch;
cout << "Holla! ";
cout << "Thank you for the " << ch << " character." << endl;
return 0;
}

Here’s the output from the program in Listing 3.5:

Enter a character:
M
Holla! Thank you for the M character.

The interesting thing is that you type an M, not the corresponding character code, 77. Also, the
program prints an M, not 77. Yet if you peer into memory, you find that 77 is the value stored
in the ch variable. The magic, such as it is, lies not in the char type but in cin and cout.
These worthy facilities make conversions on your behalf. On input, cin converts the keystroke
input M to the value 77. On output, cout converts the value 77 to the displayed character M;
cin and cout are guided by the type of variable. If you place the same value 77 into an int
variable, cout displays it as 77. (That is, cout displays two 7 characters.) Listing 3.6 illustrates
this point. It also shows how to write a character constant in C++: Enclose the character within
two single quotation marks, as in 'M'. (Note that the example doesn’t use double quotation
marks. C++ uses single quotation marks for a character and double quotation marks for a
string. The cout object can handle either, but, as Chapter 4 discusses, the two are quite differ-
ent from one another.) Finally, the program introduces a cout feature, the cout.put () func-
tion, which displays a single character.

LISTING 3.6 morechar.cpp

// morechar.cpp -- the char type and int type contrasted
#include <iostream>

int main()

{
using namespace std;
char ch = 'M'; // assign ASCII code for M to c
int i = ch; // store same code in an int

cout << "The ASCII code for " << ch << " is " << i << endl;

cout << "Add one to the character code:" << endl;

ch = ch + 1; /1 change character code in ¢

i = ch; // save new character code in i

cout << "The ASCII code for " << ch << " is " << i << endl;

Chapter 3 ¢ DEALING WITH DATA

LISTING 3.6 Continued

// using the cout.put() member function to display a char

cout << "Displaying char ch using cout.put(ch): ";
cout.put(ch);

// using cout.put() to display a char constant
cout.put('!");

cout << endl << "Done" << endl;
return 0;

}
Here is the output from the program in Listing 3.6:

The ASCII code for M is 77

Add one to the character code:

The ASCII code for N is 78

Displaying char ch using cout.put(ch): N!
Done

Program Notes

In the program in Listing 3.6, the notation 'M' represents the numeric code for the M charac-
ter, so initializing the char variable ¢ to 'M' sets ¢ to the value 77. The program then assigns

the identical value to the int variable i, so both ¢ and i have the value 77. Next, cout displays

casMand i as 77. As previously stated, a value’s type guides cout as it chooses how to display
that value—just another example of smart objects.

Because c is really an integer, you can apply integer operations to it, such as adding 1. This
changes the value of ¢ to 78. The program then resets i to the new value. (Equivalently, you
can simply add 1 to i.) Again, cout displays the char version of that value as a character and
the int version as a number.

The fact that C++ represents characters as integers is a genuine convenience that makes it easy
to manipulate character values. You don’t have to use awkward conversion functions to con-
vert characters to ASCII and back.

Finally, the program uses the cout.put () function to display both ¢ and a character constant.

A Member Function: cout.put ()

Just what is cout.put (), and why does it have a period in its name? The cout.put() function
is your first example of an important C++ OOP concept, the member function. Remember
that a class defines how to represent data and how to manipulate it. A member function
belongs to a class and describes a method for manipulating class data. The ostreanm class, for
example, has a put () member function that is designed to output characters. You can use a
member function only with a particular object of that class, such as the cout object, in this

case. To use a class member function with an object such as cout, you use a period to combine

the object name (cout) with the function name (put()). The period is called the membership
operator. The notation cout.put () means to use the class member function put () with the

81

82

C++ PRIMER PLUS, FIFTH EDITION

class object cout. You'll learn about this in greater detail when you reach classes in Chapter

10, “Objects and Classes.” Now, the only classes you have are the istream and ostream
classes, and you can experiment with their member functions to get more comfortable with the
concept.

The cout.put () member function provides an alternative to using the << operator to display a
character. At this point you might wonder why there is any need for cout.put (). Much of the
answer is historical. Before Release 2.0 of C++, cout would display character variables as
characters but display character constants, such as 'M' and 'N', as numbers. The problem
was that earlier versions of C++, like C, stored character constants as type int. That is, the
code 77 for 'M' would be stored in a 16-bit or 32-bit unit. Meanwhile, char variables typically
occupied 8 bits. A statement like

char ¢ = 'M';
copied 8 bits (the important 8 bits) from the constant 'M' to the variable ¢. Unfortunately, this

meant that, to cout, 'M' and ¢ looked quite different from one another, even though both held
the same value. So a statement like

cout << '$§';
would print the ASCII code for the $ character rather than simply display $. But
cout.put('$');

would print the character, as desired. Now, after Release 2.0, C++ stores single-character con-
stants as type char, not type int. Therefore, cout now correctly handles character constants.

The cin object has a couple different ways of reading characters from input. You can explore
these by using a program that uses a loop to read several characters, so we'll return to this
topic when we cover loops in Chapter 5, “Loops and Relational Expressions.”

char Constants

You have several options for writing character constants in C++. The simplest choice for ordi-
nary characters, such as letters, punctuation, and digits, is to enclose the character in single
quotation marks. This notation stands for the numeric code for the character. For example, an
ASCII system has the following correspondences:

"A' is 65, the ASCII code for A

'a' is 97, the ASCIl code for a

'5' is 53, the ASCII code for the digit 5

" ' is 82, the ASCII code for the space character

"1 is 33, the ASCII code for the exclamation point

Using this notation is better than using the numeric codes explicitly. It clearer, and it doesn't
assume a particular code. If a system uses EBCDIC, then 65 is not the code for A, but 'A" still
represents the character.

Chapter 3 ¢ DEALING WITH DATA

There are some characters that you can't enter into a program directly from the keyboard. For
example, you can’t make the newline character part of a string by pressing the Enter key;
instead, the program editor interprets that keystroke as a request for it to start a new line in
your source code file. Other characters have difficulties because the C++ language imbues
them with special significance. For example, the double quotation mark character delimits
strings, so you can't just stick one in the middle of a string. C++ has special notations, called
escape sequences, for several of these characters, as shown in Table 3.2. For example, \a repre-
sents the alert character, which beeps your terminal’s speaker or rings its bell. The escape
sequence \n represents a newline. And \" represents the double quotation mark as an ordi-
nary character instead of a string delimiter. You can use these notations in strings or in charac-
ter constants, as in the following examples:

char alarm = '\a';
cout << alarm << "Don't do that again!\a\n";

cout << "Ben \"Buggsie\" Hacker\nwas here!\n";

TABLE 3.2 C++ Escape Sequence Codes

Character ASClI C++ ASClI ASClI
Name Symbol Code Decimal Code Hex Code
Newline NL (LF) \n 10 OxA
Horizontal tab HT \t 9 0x9
Vertical tab VT \v 11 0xB
Backspace BS \b 8 0x8
Carriage return CR \r 13 0xD
Alert BEL \a 7 0x7
Backslash \ \\ 92 0x5C
Question mark ? \? 63 Ox3F
Single quote ! \! 39 0x27
Double quote : \" 34 0x22

The last line produces the following output:

Ben "Buggsie" Hacker

was here!

Note that you treat an escape sequence, such as \n, just as a regular character, such as Q. That
is, you enclose it in single quotes to create a character constant and don't use single quotes
when including it as part of a string.

83

84

C++ PRIMER PLUS, FIFTH EDITION

The newline character provides an alternative to endl for inserting new lines into output. You
can use the newline character in character constant notation ('\n") or as character in a string
("\n"). All three of the following move the screen cursor to the beginning of the next line:

cout << endl; // using the endl manipulator
cout << '"\n'; // using a character constant
cout << "\n"; // using a string

You can embed the newline character in a longer string; this is often more convenient than
using endl. For example, the following two cout statements produce the same output:

cout << endl << endl << "What next?" << endl << "Enter a number:" << endl;
cout << "\n\nWhat next?\nEnter a number:\n";

When you’re displaying a number, endl is a bit easier to type than "\n" or '\n"', but, when
you're displaying a string, ending the string with a newline character requires less typing:

cout << x << endl; // easier than cout << x << "\n";
cout << "Dr. X.\n"; // easier than cout << "Dr. X." << endl;

Finally, you can use escape sequences based on the octal or hexadecimal codes for a character.
For example, Ctrl+Z has an ASCII code of 26, which is 032 in octal and Ox1a in hexadecimal.
You can represent this character with either of the following escape sequences: \032 or \x1a.
You can make character constants out of these by enclosing them in single quotes, as in
'\032', and you can use them as parts of a string, as in "hi\x1a there".

@ Tip

®
When you have a choice between using a numeric escape sequence or a symbolic escape sequence,
as in \@x8 versus \b, use the symbolic code. The numeric representation is tied to a particular code,
such as ASCII, but the symbolic representation works with all codes and is more readable.

Listing 3.7 demonstrates a few escape sequences. It uses the alert character to get your atten-
tion, the newline character to advance the cursor (one small step for a cursor, one giant step
for cursorkind), and the backspace character to back the cursor one space to the left. (Houdini
once painted a picture of the Hudson River using only escape sequences; he was, of course, a
great escape artist.)

LISTING 3.7 bondini.cpp

// bondini.cpp -- using escape sequences
#include <iostream>

int main()

{

using namespace std;

cout << "\aOperation \"HyperHype\" is now activated!\n";
cout << "Enter your agent code: \b\b\b\b\b\b\b\b";
long code;

cin >> code;

Chapter 3 ¢ DEALING WITH DATA 85

LISTING 3.7 Continued

cout << "\aYou entered " << code << "...\n";
cout << "\aCode verified! Proceed with Plan Z3!\n";
return 0;

g Compatibility Note

Some C++ systems based on pre-ANSI C compilers don't recognize \a. You can substitute \007 for
\a on systems that use the ASCII character code. Some systems might behave differently, displaying
the \b as a small rectangle rather than backspacing, for example, or perhaps erasing while backspac-
ing, perhaps ignoring \a.

When you start the program in Listing 3.7, it puts the following text onscreen:

Operation "HyperHype" is now activated!
Enter your agent code:

After printing the underscore characters, the program uses the backspace character to back up
the cursor to the first underscore. You can then enter your secret code and continue. Here’s a
complete run:

Operation "HyperHype" is now activated!

Enter your agent code:42007007

You entered 42007007...
Code verified! Proceed with Plan Z3!

Universal Character Names

C++ implementations support a basic source character set—that is, the set of characters you
can use to write source code. It consists of the letters (uppercase and lowercase) and digits
found on a standard U.S. keyboard, the symbols, such as { and =, used in the C language, and
a scattering of other characters, such as newline and space characters. Then there is a basic
execution character set (that is, characters that can be produced by the execution of a pro-
gram), which adds a few more characters, such as backspace and alert. The C++ Standard also
allows an implementation to offer extended source character sets and extended execution
character sets. Furthermore, those additional characters that qualify as letters can be used as
part of the name of an identifier. Thus, a German implementation might allow you to use
umlauted vowels and a French implementation might allow accented vowels. C++ has a mech-
anism for representing such international characters that is independent of any particular key-
board: the use of universal character names.

Using universal character names is similar to using escape sequences. A universal character
name begins either with \u or \U. The \u form is followed by 8 hexadecimal digits, and the \U
form by 16 hexadecimal digits. These digits represent the ISO 10646 code for the character.
(ISO 10646 is an international standard under development that provides numeric codes for a
wide range of characters. See “Unicode and ISO 10646, later in this chapter.)

86

C++ PRIMER PLUS, FIFTH EDITION

If your implementation supports extended characters, you can use universal character names
in identifiers, as character constants, and in strings. For example, consider the following code:

int k\uQQF6érper;
cout << "Let them eat g\u0QE2teau.\n";

The ISO 10646 code for 6 is 00F6, and the code for 4 is 00E2. Thus, this C++ code would set
the variable name to kérper and display the following output:

Let them eat gateau.

If your system doesn’t support ISO 10646, it might display some other character for 4 or per-
haps simply display the word gu@oE2teau.

Unicode and ISO 10646

Unicode provides a solution to the representation of various character sets by providing standard
numeric codes for a great number of characters and symbols, grouping them by type. For example,
the ASCII code is incorporated as a subset of Unicode, so U.S. Latin characters such as A and Z have
the same representation under both systems. But Unicode also incorporates other Latin characters,
such as those used in European languages; characters from other alphabets, including Greek, Cyrillic,
Hebrew, Arabic, Thai, and Bengali; and ideographs, such as those used for Chinese and Japanese. So
far Unicode represents more than 96,000 symbols and 49 scripts, and it is still under development. If
you want to know more, you can check the Unicode Consortium’s website, at www.unicode.org.

The International Organization for Standardization (ISO) established a working group to develop ISO
10646, also a standard for coding multilingual text. The ISO 10646 group and the Unicode group
have worked together since 1991 to keep their standards synchronized with one another.

signed char and unsigned char

Unlike int, char is not signed by default. Nor is it unsigned by default. The choice is left to
the C++ implementation in order to allow the compiler developer to best fit the type to the
hardware properties. If it is vital to you that char has a particular behavior, you can use
signed char or unsigned char explicitly as types:

char fodo; // may be signed, may be unsigned
unsigned char bar; // definitely unsigned
signed char snark; // definitely signed

These distinctions are particularly important if you use char as a numeric type. The unsigned
char type typically represents the range O to 255, and signed char typically represents the
range —128 to 127. For example, suppose you want to use a char variable to hold values as
large as 200. That works on some systems but fails on others. You can, however, successfully
use unsigned char for that purpose on any system. On the other hand, if you use a char vari-
able to hold a standard ASCII character, it doesn't really matter whether char is signed or
unsigned, so you can simply use char.

For When You Need More: wchar_t

Programs might have to handle character sets that don't fit within the confines of a single 8-bit
byte (for example, the Japanese kanji system). C++ handles this in a couple ways. First, if a

Chapter 3 ¢ DEALING WITH DATA 87

large set of characters is the basic character set for an implementation, a compiler vender can
define char as a 16-bit byte or larger. Second, an implementation can support both a small
basic character set and a larger extended character set. The usual 8-bit char can represent the
basic character set, and another type, called wehar_t (for wide character type), can represent
the extended character set. The wchar_t type is an integer type with sufficient space to repre-
sent the largest extended character set used on the system. This type has the same size and
sign properties as one of the other integer types, which is called the underlying type. The
choice of underlying type depends on the implementation, so it could be unsigned short on
one system and int on another.

The cin and cout family consider input and output as consisting of streams of chars, so they
are not suitable for handling the wehar_t type. The latest version of the iostream header file
provides parallel facilities in the form of wein and weout for handling wehar_t streams. Also,
you can indicate a wide-character constant or string by preceding it with an L. The following
code stores a wehar_t version of the letter P in the variable bob and displays a whar_t version
of the word tall:

wchar_t bob = L'P'; /] a wide-character constant
wcout << L"tall" << endl; // outputting a wide-character string

On a system with a 2-byte wchar_t, this code stores each character in a 2-byte unit of memory.
This book doesn't use the wide-character type, but you should be aware of it, particularly if
you become involved in international programming or in using Unicode or ISO 10646.

The bool Type

The ANSI/ISO C++ Standard has added a new type (new to C++, that is), called bool. It's
named in honor of the English mathematician George Boole, who developed a mathematical
representation of the laws of logic. In computing, a Boolean variable is one whose value can
be either true or false. In the past, C++, like C, has not had a Boolean type. Instead, as you'll
see in greater detail in Chapters 5 and 6, “Branching Statements and Logical Operators,” C++
interprets nonzero values as true and zero values as false. Now, however, you can use the bool
type to represent true and false, and the predefined literals true and false represent those
values. That is, you can make statements like the following;

bool isready = true;

The literals true and false can be converted to type int by promotion, with true converting
to 1 and false to O:

int ans = true; // ans assigned 1
int promise = false; // promise assigned 0

Also, any numeric or pointer value can be converted implicitly (that is, without an explicit
type cast) to a bool value. Any nonzero value converts to true, whereas a zero value converts
to false:

bool start = -100; /| start assigned true
bool stop = 0; // stop assigned false

88 C++ PRIMER PLUS, FIFTH EDITION

After the book introduces if statements (in Chapter 6), the bool type will become a common
feature in the examples.

The const Qualifier

Now let’s return to the topic of symbolic names for constants. A symbolic name can suggest
what the constant represents. Also, if the program uses the constant in several places and you
need to change the value, you can just change the single symbol definition. The note about
#define statements earlier in this chapter (see the sidebar “Symbolic Constants the
Preprocessor Way”) promises that C++ has a better way to handle symbolic constants. That
way is to use the const keyword to modify a variable declaration and initialization. Suppose,
for example, that you want a symbolic constant for the number of months in a year. You enter
this line in a program:

const int MONTHS = 12; // Months is symbolic constant for 12

Now you can use MONTHS in a program instead of 12. (A bare 12 in a program might represent
the number of inches in a foot or the number of donuts in a dozen, but the name MONTHS tells
you what the value 12 represents.) After you initialize a constant such as MONTHS, its value is
set. The compiler does not let you subsequently change the value MONTHS. If you try to, for
example, Borland C++ gives an error message stating that an lvalue is required. This is the
same message you get if you try, say, to assign the value 4 to 3. (An lvalue is a value, such as a
variable, that appears on the left side of the assignment operator.) The keyword const is
termed a qualifier because it qualifies the meaning of a declaration.

A common practice is to use all uppercase for the name to help remind yourself that MONTHS is
a constant. This is by no means a universal convention, but it helps separate the constants
from the variables when you read a program. Another convention is to capitalize just the first
character in the name. Yet another convention is to begin constant names with the letter k, as
in kmonths. And there are yet other conventions. Many organizations have particular coding
conventions they expect their programmers to follow.

The general form for creating a constant is this:

const type name = value;

Note that you initialize a const in the declaration. The following sequence is no good:

const int toes; // value of toes undefined at this point
toes = 10; // too late!

If you don’t provide a value when you declare the constant, it ends up with an unspecified
value that you cannot modify.

If your background is in C, you might feel that the #define statement, which is discussed ear-
lier, already does the job adequately. But const is better. For one thing, it lets you specify the
type explicitly. Second, you can use C++% scoping rules to limit the definition to particular
functions or files. (Scoping rules describe how widely known a name is to different modules;
you'll learn about this in more detail in Chapter 9, “Memory Models and Namespaces.”) Third,

Chapter 3 ¢ DEALING WITH DATA

you can use const with more elaborate types, such as arrays and structures, as discussed in
Chapter 4.

@ Tip

®
If you are coming to C++ from C and you are about to use #define to define a symbolic constant,

use const instead.

ANSI C also uses the const qualifier, which it borrows from C++. If you're familiar with the
ANSI C version, you should be aware that the C++ version is slightly different. One difference
relates to the scope rules, and Chapter 9 covers that point. The other main difference is that in
C++ (but not in C), you can use a const value to declare the size of an array. You'll see exam-
ples in Chapter 4.

Floating-Point Numbers

Now that you have seen the complete line of C++ integer types, let’s look at the floating-point
types, which compose the second major group of fundamental C++ types. These numbers let
you represent numbers with fractional parts, such as the gas mileage of an M1 tank (0.56
MPG). They also provide a much greater range in values. If a number is too large to be repre-
sented as type long—for example, the number of stars in our galaxy (an estimated
400,000,000,000)—you can use one of the floating-point types.

With floating-point types, you can represent numbers such as 2.5 and 3.14159 and
122442.32—that is, numbers with fractional parts. A computer stores such values in two
parts. One part represents a value, and the other part scales that value up or down. Here’s an
analogy. Consider the two numbers 34.1245 and 34124.5. They're identical except for scale.
You can represent the first one as 0.341245 (the base value) and 100 (the scaling factor). You
can represent the second as 0.341245 (the same base value) and 100,000 (a bigger scaling fac-
tor). The scaling factor serves to move the decimal point, hence the term floating-point.
C++ uses a similar method to represent floating-point numbers internally, except it’s based on
binary numbers, so the scaling is by factors of 2 instead of by factors of 10. Fortunately, you
don’t have to know much about the internal representation. The main points are that floating-
point numbers let you represent fractional, very large, and very small values, and they have
internal representations much different from those of integers.

Writing Floating-Point Numbers

C++ has two ways of writing floating-point numbers. The first is to use the standard decimal-
point notation you've been using much of your life:

12.34 // floating-point
939001.32 /] floating-point
0.00023 // floating-point

8.0 // still floating-point

90

FIGURE 3.3

E notation. 15¢37HE$1 6

C++ PRIMER PLUS, FIFTH EDITION

Even if the fractional part is 0, as in 8.0, the decimal point ensures that the number is repre-
sented in floating-point format and not as an integer. (The C++ Standard does allow for imple-
mentations to represent different locales—for example, providing a mechanism for using the
European method of using a comma instead of a period for the decimal point. However, these
choices govern how the numbers can appear in input and output, not in code.)

The second method for representing floating-point values is called E notation, and it looks like
this: 3.45E6. This means that the value 3.45 is multiplied by 1,000,000; the E6 means 10 to
the 6th power, which is 1 followed by 6 zeros. Thus 3.45E6 means 3,450,000. The 6 is called
an exponent, and the 3.45 is termed the mantissa. Here are more examples:

2.52e+8 // can use E or e, + is optional
8.33E-4 // exponent can be negative

7E5 // same as 7.0QE+05

-18.32e13 // can have + or - sign in front
7.123e12 // U.S. public debt, early 2004
5.98E24 // mass of earth in kilograms
9.11e-31 // mass of an electron in kilograms

As you might have noticed, E notation is most useful for very large and very small numbers.

E notation guarantees that a number is stored in floating-point format, even if no decimal
point is used. Note that you can use either E or e, and the exponent can have a positive or neg-
ative sign. (See Figure 3.3.) However, you can't have spaces in the number, so, for example,
7.2 E6 is invalid.

you can use € or E

optional + or — sign sign can be + or — or omitted

| M
decimal point no spaces
is optional

To use a negative exponent means to divide by a power of 10 instead of to multiply by a power
of 10. So 8.33E-4 means 8.33 / 10%, or 0.000833. Similarly, the electron mass 9.11e-31 kg
means 0.000000000000000000000000000000911 kg. Take your choice. (Incidentally, note
that 911 is the usual emergency telephone number in the United States and that telephone
messages are carried by electrons. Coincidence or scientific conspiracy? You be the judge.)
Note that —8.33E4 means —83300. A sign in front applies to the number value, and a sign in
the exponent applies to the scaling.

Chapter 3 ¢ DEALING WITH DATA 91

Remember

The form d.dddE+n means move the decimal point n places to the right, and the form d.dddE-n
means move the decimal point n places to the left.

Floating-Point Types

Like ANSI C, C++ has three floating-point types: float, double, and long double. These
types are described in terms of the number of significant figures they can represent and the
minimum allowable range of exponents. Significant figures are the meaningful digits in a
number. For example, writing the height of Mt. Shasta in California as 14,162 feet uses five
significant figures, for it specifies the height to the nearest foot. But writing the height of Mt.
Shasta as about 14,000 feet tall uses two significant figures, for the result is rounded to the
nearest thousand feet; in this case, the remaining three digits are just placeholders. The num-
ber of significant figures doesn’t depend on the location of the decimal point. For example,
you can write the height as 14.162 thousand feet. Again, this uses five significant digits
because the value is accurate to the fifth digit.

In effect, the C and C++ requirements for significant digits amount to float being at least 32
bits, double being at least 48 bits and certainly no smaller than float, and long double being
at least as big as double. All three can be the same size. Typically, however, float is 32 bits,
double is 64 bits, and long double is 80, 96, or 128 bits. Also, the range in exponents for all
three types is at least =37 to +37. You can look in the cfloat or float.h header files to find
the limits for your system. (cfloat is the C++ version of the C float.h file.) Here, for exam-
ple, are some annotated entries from the float.h file for Borland C++ Builder:

// the following are the minimum number of significant digits

#define DBL_DIG 15 /] double

#define FLT_DIG 6 /] float

#define LDBL_DIG 18 // long double

// the following are the number of bits used to represent the mantissa
#define DBL_MANT_DIG 53

#define FLT_MANT_DIG 24

#define LDBL_MANT DIG 64

// the following are the maximum and minimum exponent values
#define DBL_MAX_10_EXP +308

#define FLT _MAX_10 _EXP +38

#define LDBL_MAX_10_EXP +4932

#define DBL_MIN_10_EXP -307
#define FLT_MIN 10 _EXP -37
#define LDBL_MIN 10 _EXP -4931

@ Compatibility Note

Some C++ implementations have not yet added the cfloat header file, and some C++ implementa-
tions based on pre-ANSI C compilers don’t provide a float.h header file.

92

C++ PRIMER PLUS, FIFTH EDITION

Listing 3.8 examines types float and double and how they can differ in the precision to
which they represent numbers (that’s the significant figure aspect). The program previews an
ostream method called setf () from Chapter 17, “Input, Output, and Files.” This particular
call forces output to stay in fixed-point notation so that you can better see the precision. It pre-
vents the program from switching to E notation for large values and causes the program to dis-
play six digits to the right of the decimal. The arguments ios_base: : fixed and
ios_base::floatfield are constants provided by including iostream.

LISTING 3.8 floatnum.cpp

// floatnum.cpp -- floating-point types
#include <iostream>
int main()
{
using namespace std;
cout.setf(ios_base::fixed, ios_base::floatfield); // fixed-point
float tub = 10.0 / 3.0; // good to about 6 places
double mint = 10.0 / 3.0; // good to about 15 places
const float million = 1.0e6;

cout << "tub = " << tub;

cout << ", a million tubs = " << million * tub;
cout << ",\nand ten million tubs = ";

cout << 10 * million * tub << endl;

cout << "mint = " << mint << " and a million mints = ";
cout << million * mint << endl;
return 0;

}
Here is the output from the program in Listing 3.8:

tub = 3.333333, a million tubs = 3333333.250000,
and ten million tubs = 33333332.000000
mint = 3.333333 and a million mints = 3333333.333333

® Compatibility Note

The C++ Standard has replaced ios::fixed with ios_base::fixed and ios::floatfield with
ios_base::floatfield. If your compiler does not accept the ios_base forms, try using ios
instead; that is, substitute ios::fixed for ios_base: : fixed, etc. By default, older versions of C++,
when they display floating-point values, display six digits to the right of the decimal, as in
2345.831541. Standard C++, by default, displays a total of six digits (2345.83), switching to E nota-
tion when values reach a million or greater (2.34583E+06). However, the nondefault display modes,
such as fixed in the preceding example, display six digits to the right of the decimal in both old and
new versions.

The default setting also suppresses trailing zeros, displaying 23.4500 as 23.45. Implementations dif-
fer in how they respond to using the setf () statement to override the default settings. Older ver-
sions, such as Borland C++ 3.1 for DOS, suppress trailing zeros in this mode as well. Versions
conforming to the standard, such as Microsoft Visual C++ 7.0, Metrowerks CodeWarrior 9, Gnu
GCC 3.3, and Borland C++ 5.5, display the zeros, as shown in Listing 3.8.

Chapter 3 ¢ DEALING WITH DATA

Program Notes

Normally cout drops trailing zeros. For example, it would display 3333333.250000 as
3333333.25. The call to cout.setf () overrides that behavior, at least in new implementa-
tions. The main thing to note in Listing 3.8 is how float has less precision than double. Both
tub and mint are initialized to 10.0 / 3.0. That should evaluate to
3.33333333333333333...(etc.). Because cout prints six figures to the right of the decimal,
you can see that both tub and mint are accurate that far. But after the program multiplies each
number by a million, you see that tub diverges from the proper value after the 7th three. tub
is good to 7 significant figures. (This system guarantees 6 significant figures for float, but
that’s the worst-case scenario.) The type double variable, however, shows 13 threes, so it’s
good to at least 13 significant figures. Because the system guarantees 15, this shouldn’t sur-
prise you. Also, note that multiplying a million tubs by 10 doesn't quite result in the correct
answer; this again points out the limitations of float precision.

The ostreanm class to which cout belongs has class member functions that give you precise
control over how the output is formatted—field widths, places to the right of the decimal
point, decimal form or E form, and so on. Chapter 17 outlines those choices. This book’s
examples keep it simple and usually just use the << operator. Occasionally, this practice dis-
plays more digits than necessary, but that causes only esthetic harm. If you do mind, you can
skim Chapter 17 to see how to use the formatting methods. Don't, however, expect to fully fol-
low the explanations at this point.

U Real-World Note: Reading Include Files

e The include directives found at the top of C++ source files often take on the air of a magical incanta-

tion; novice C++ programmers learn, through reading and experience, which header files add partic-
ular functionalities, and they include them solely to make their programs work. Don't rely on the
include files only as a source of mystic and arcane knowledge; feel free to open them up and read
them. They are text files, so you can read them easily. All the files you include in your programs exist
on your computer, or in a place where your computer can use them. Find the includes you use and
see what they contain. You'll quickly see that the source and header files that you use are an excel-
lent source of knowledge and information—in some cases, the best documentation available. Later,
as you progress into more complex inclusions and begin to use other, nonstandard libraries in your
applications, this habit will serve you well.

Floating-Point Constants

When you write a floating-point constant in a program, in which floating-point type does the
program store it? By default, floating-point constants such as 8.24 and 2.4E8 are type double.
If you want a constant to be type float, you use an f or F suffix. For type long double, you
use an 1 or L suffix. (Because the lowercase 1 looks a lot like the digit 1, the uppercase L is a
better choice.) Here are some samples:

1.234f // a float constant
2.45E20F // a float constant
2.345324E28 // a double constant
2.2L // a long double constant

94

C++ PRIMER PLUS, FIFTH EDITION

Advantages and Disadvantages of Floating-Point
Numbers

Floating-point numbers have two advantages over integers. First, they can represent values
between integers. Second, because of the scaling factor, they can represent a much greater
range of values. On the other hand, floating-point operations are slower than integer opera-
tions, at least on computers without math coprocessors, and you can lose precision. Listing 3.9
illustrates the last point.

LISTING 3.9 fltadd.cpp

// fltadd.cpp -- precision problems with float
#include <iostream>
int main()
{
using namespace std;
float a = 2.34E+22f;

float b = a + 1.0f;

cout << "a = " << a << endl;

cout << "b - a =" <<b - a<<endl;
return 0;

g Compatibility Note

Some ancient C++ implementations based on pre-ANSI C compilers don’t support the f suffix for
indicating type float constants. If you find yourself facing this problem, you can replace 2.34E+22f
with 2.34E+22 and replace 1.0f with (float) 1.0.

The program in Listing 3.9 takes a number, adds 1, and then subtracts the original number.
That should result in a value of 1. Does it? Here is the output from the program in Listing 3.9
for one system:

a = 2.34e+022
b-a=20

The problem is that 2.34E+22 represents a number with 23 digits to the left of the decimal. By
adding 1, you are attempting to add 1 to the 23rd digit in that number. But type float can
represent only the first 6 or 7 digits in a number, so trying to change the 23rd digit has no
effect on the value .

Classifying Data Types

C++ brings some order to its basic types by classifying them into families. Types signed char,
short, int, and long are termed signed integer types. The unsigned versions are termed
unsigned integer types. The bool, char, wchar_t, signed integer, and unsigned integer types

Chapter 3 ¢ DEALING WITH DATA 95

together are termed integral types or integer types. The float, double, and long double types
are termed floating-point types. Integer and floating-point types are collectively termed arith-
metic types.

C++ Arithmetic Operators

Perhaps you have warm memories of doing arithmetic drills in grade school. You can give that
same pleasure to your computer. C++ uses operators to do arithmetic. It provides operators for
five basic arithmetic calculations: addition, subtraction, multiplication, division, and taking
the modulus. Each of these operators uses two values (called operands) to calculate a final
answer. Together, the operator and its operands constitute an expression. For example, con-
sider the following statement:

int wheels = 4 + 2;

The values 4 and 2 are operands, the + symbol is the addition operator, and 4 + 2 is an
expression whose value is 6.

Here are C++5 five basic arithmetic operators:
* The + operator adds its operands. For example, 4 + 20 evaluates to 24.

* The - operator subtracts the second operand from the first. For example, 12 - 3 evalu-
ates to 9.

* The * operator multiplies its operands. For example, 28 * 4 evaluates to 112.

* The / operator divides its first operand by the second. For example, 1000 / 5 evaluates
to 200. If both operands are integers, the result is the integer portion of the quotient. For
example, 17 / 3is 5, with the fractional part discarded.

* The % operator finds the modulus of its first operand with respect to the second. That is,
it produces the remainder of dividing the first by the second. For example, 19 % 6 is 1
because 6 goes into 19 three times, with a remainder of 1. Both operands must be integer
types; using the % operator with floating-point values causes a compile-time error. If one
of the operands is negative, the sign of the result depends on the implementation.

Of course, you can use variables as well as constants for operands. Listing 3.10 does just that.
Because the % operator works only with integers, we’ll leave it for a later example.

LISTING 3.10 arith.cpp

// arith.cpp -- some C++ arithmetic
#include <iostream>

int main()

{

using namespace std;
float hats, heads;

96

C++ PRIMER PLUS, FIFTH EDITION

LISTING 3.10 Continued

cout.setf(ios_base::fixed, ios_base::floatfield); // fixed-point
cout << "Enter a number: ";

cin >> hats;

cout << "Enter another number: ";

cin >> heads;

cout << "hats = " << hats << "; heads = " << heads << endl;
cout << "hats + heads = " << hats + heads << endl;
cout << "hats - heads = " << hats - heads << endl;
cout << "hats * heads = " << hats * heads << endl;
cout << "hats / heads = " << hats / heads << endl;

return 0;

% Compatibility Note

If your compiler does not accept the ios_base forms in setf (), try using the older ios forms
instead; that is, substitute ios::fixed for ios_base::fixed, etc.

As you can see in the following sample output from the program in Listing 3.10, you can trust
C++ to do simple arithmetic:

Enter a number: 50.25

Enter another number: 11.17

hats = 50.250000; heads = 11.170000
hats + heads = 61.419998

hats - heads 39.080002

hats * heads 561.292480

hats / heads = 4.498657

Well, maybe you can't trust it completely. Adding 11.17 to 50.25 should yield 61.42, but the
output reports 61.419998. This is not an arithmetic problem; it’s a problem with the limited
capacity of type float to represent significant figures. Remember, C++ guarantees just six sig-
nificant figures for float. If you round 61.419998 to six figures, you get 61.4200, which is
the correct value to the guaranteed precision. The moral is that if you need greater accuracy,
you should use double or long double.

Order of Operation: Operator Precedence and
Associativity

Can you trust C++ to do complicated arithmetic? Yes, but you must know the rules C++ uses.
For example, many expressions involve more than one operator. That can raise questions
about which operator gets applied first. For example, consider this statement:

int flyingpigs = 3 + 4 * 5; // 35 or 23?7

The 4 appears to be an operand for both the + and * operators. When more than one operator
can be applied to the same operand, C++ uses precedence rules to decide which operator is

Chapter 3 ¢ DEALING WITH DATA

used first. The arithmetic operators follow the usual algebraic precedence, with multiplication,
division, and the taking of the modulus done before addition and subtraction. Thus 8 + 4 *
5means 3 + (4 * 5),not (3 + 4) * 5. So the answer is 23, not 35. Of course, you can use
parentheses to enforce your own priorities. Appendix D, “Operator Precedence,” shows prece-
dence for all the C++ operators. Note that *, /, and % are all in the same row in Appendix D.
That means they have equal precedence. Similarly, addition and subtraction share a lower
precedence.

Sometimes the precedence list is not enough. Consider the following statement:

float logs = 120 / 4 * 5; // 150 or 6?

Once again, 4 is an operand for two operators. But the / and * operators have the same prece-
dence, so precedence alone doesn't tell the program whether to first divide 120 by 4 or multi-
ply 4 by 5. Because the first choice leads to a result of 150 and the second to a result of 6, the
choice is an important one. When two operators have the same precedence, C++ looks at
whether the operators have a left-to-right associativity or a right-to-left associativity. Left-
to-right associativity means that if two operators acting on the same operand have the same
precedence, you apply the left-hand operator first. For right-to-left associativity, you apply the
right-hand operator first. The associativity information, too, is in Appendix D. Appendix D
shows that multiplication and division associate left-to-right. That means you use 4 with the
leftmost operator first. That is, you divide 120 by 4, get 30 as a result, and then multiply the
result by 5 to get 150.

Note that the precedence and associativity rules come into play only when two operators share
the same operand. Consider the following expression:

int dues = 20 * 5 + 24 * 6;

Operator precedence tells you two things: The program must evaluate 20 * 5 before doing
addition, and the program must evaluate 24 * 6 before doing addition. But neither prece-
dence nor associativity says which multiplication takes place first. You might think that asso-
ciativity says to do the leftmost multiplication first, but in this case, the two * operators do not
share a common operand, so the rules don't apply. In fact, C++ leaves it to the implementation
to decide which order works best on a system. For this example, either order gives the same
result, but there are circumstances in which the order can make a difference. You'll see one in
Chapter 5, which discusses the increment operator.

Division Diversions

You have yet to see the rest of the story about the division operator (/). The behavior of this
operator depends on the type of the operands. If both operands are integers, C++ performs
integer division. That means any fractional part of the answer is discarded, making the result
an integer. If one or both operands are floating-point values, the fractional part is kept, making
the result floating-point. Listing 3.11 illustrates how C++ division works with different types of
values. As in Listing 3.10, Listing 3.11 invokes the setf () member function to modify how
the results are displayed.

97

98 C++ PRIMER PLUS, FIFTH EDITION

LISTING 3.11 divide.cpp

// divide.cpp -- integer and floating-point division
#include <iostream>

int main()

{

using namespace std;

cout.setf(ios_base::fixed, ios_base::floatfield);
cout << "Integer division: 9/5 = " << 9 / 5 << endl;
cout << "Floating-point division: 9.0/5.0 = ";

cout << 9.0 / 5.0 << endl;

cout << "Mixed division: 9.0/5 = " << 9.0 / 5 << endl;
cout << "double constants: 1e7/9.0 = ";

cout << 1.e7 / 9.0 << endl;

cout << "float constants: 1e7f/9.0f = ";

cout << 1.e7f / 9.0f << endl;

return 0;

Compatibility Note

If your compiler does not accept the ios_base forms in setf (), try using the older ios forms
instead.

Some C++ implementations based on pre-ANSI C compilers don’t support the f suffix for floating-
point constants. If you find yourself facing this problem, you can replace 1.e7f / 9.0f with
(float) 1.e7 /(float) 9.0.

Some implementations suppress trailing zeros.

Here is the output from the program in Listing 3.11 for one implementation:

Integer division: 9/5 = 1

Floating-point division: 9.0/5.0 = 1.800000
Mixed division: 9.0/5 = 1.800000

double constants: 1e7/9.0 = 1111111.111111
float constants: 1e7f/9.0f = 1111111.125000

The first output line shows that dividing the integer 9 by the integer 5 yields the integer 1. The
fractional part of 4 / 5 (or 0.8) is discarded. (You'll see a practical use for this kind of division
when you learn about the modulus operator, later in this chapter.) The next two lines show
that when at least one of the operands is floating-point, you get a floating-point answer of 1.8.
Actually, when you try to combine mixed types, C++ converts all the concerned types to the
same type. You'll learn about these automatic conversions later in this chapter. The relative
precisions of the last two lines show that the result is type double if both operands are double
and that it is float if both operands are float. Remember, floating-point constants are type
double by default.

Chapter 3 ¢ DEALING WITH DATA 99

A Glimpse at Operator Overloading

In Listing 3.11, the division operator represents three distinct operations: int division, float divi-
sion, and double division. C++ uses the context—in this case the type of operands—to determine
which operator is meant. The process of using the same symbol for more than one operation is
called operator overloading. C++ has a few examples of overloading built in to the language.
C++ also lets you extend operator overloading to user-defined classes, so what you see here is a pre-
cursor of an important OOP property. (See Figure 3.4.)

FIGURE 3.4 int / int 1 / 1
Different divisions. type 1N /type 1N type 20Ng /type L0Ng
9/5 9L / 5L
operator performs operator performs
int division long division

type double /type double type float /type float

9.0 / 5.0 9.0f / 5.0f
operator performs operator performs
double division float division

The Modulus Operator

Most people are more familiar with addition, subtraction, multiplication, and division than
with the modulus operation, so lets take a moment to look at the modulus operator in action.
The modulus operator returns the remainder of an integer division. In combination with inte-
ger division, the modulus operation is particularly useful in problems that require dividing a
quantity into different integral units, such as converting inches to feet and inches or convert-
ing dollars to quarters, dimes, nickels, and pennies. In Chapter 2, Listing 2.6 converts weight
in British stone to pounds. Listing 3.12 reverses the process, converting weight in pounds to
stone. A stone, you remember, is 14 pounds, and most British bathroom scales are calibrated
in this unit. The program uses integer division to find the largest number of whole stone in the
weight, and it uses the modulus operator to find the number of pounds left over.

LISTING 3.12 modulus.cpp

// modulus.cpp -- uses % operator to convert lbs to stone
#include <iostream>
int main()
{
using namespace std;
const int Lbs_per_stn = 14;
int 1bs;
cout << "Enter your weight in pounds: ";
cin >> 1bs;

100

C++ PRIMER PLUS, FIFTH EDITION

LISTING 3.12 Continued

int stone = 1lbs / Lbs_per_stn; // whole stone
int pounds = 1lbs % Lbs_per_stn; // remainder in pounds
cout << 1lbs << " pounds are " << stone
<< " stone, " << pounds << " pound(s).\n";
return 0;

}
Here is a sample run of the program in Listing 3.12:

Enter your weight in pounds: 177
184 pounds are 12 stone, 9 pound(s).

In the expression 1bs / Lbs_per_stn, both operands are type int, so the computer performs
integer division. With a 1bs value of 177, the expression evaluates to 12. The product of 12
and 14 is 168, so the remainder of dividing 14 into 177 is 9, and that’s the value of 1bs %
Lbs_per_stn. Now you are prepared technically, if not emotionally, to respond to questions
about your weight when you travel in Great Britain.

Type Conversions

C++% profusion of types lets you match the type to the need. It also complicates life for the
computer. For example, adding two short values may involve different hardware instructions
than adding two long values. With 11 integral types and 3 floating-point types, the computer
can have a lot of different cases to handle, especially if you start mixing types. To help deal
with this potential mishmash, C++ makes many type conversions automatically:

o C++ converts values when you assign a value of one arithmetic type to a variable of
another arithmetic type.

o C++ converts values when you combine mixed types in expressions.
o C++ converts values when you pass arguments to functions.

If you don’t understand what happens in these automatic conversions, you might find some
program results baffling, so let’s take a more detailed look at the rules.

Conversion on Assignment

C++ is fairly liberal in allowing you to assign a numeric value of one type to a variable of
another type. Whenever you do so, the value is converted to the type of the receiving variable.
For example, suppose so_long is type long, thirty is type short, and you have the following
statement in a program:

so_long = thirty; // assigning a short to a long
The program takes the value of thirty (typically a 16-bit value) and expands it to a long

value (typically a 32-bit value) upon making the assignment. Note that the expansion creates a
new value to place into so_long; the contents of thirty are unaltered.

Assigning a value to a type with a greater range usually poses no problem. For example,
assigning a short value to a long variable doesn’t change the value; it just gives the value a few

Chapter 3 ¢ DEALING WITH DATA 101

more bytes in which to laze about. However, assigning a large long value such as 2111222333
to a float variable results in the loss of some precision. Because float can have just six signif-
icant figures, the value can be rounded to 2.11122E9. So, while some conversions are safe,
some may pose difficulties. Table 3.3 points out some possible conversion problems.

TABLE 3.3 Potential Numeric Conversion Problems

Conversion Type Potential Problems
Bigger floating-point type to Loss of precision (significant figures); value might be out of
smaller floating-point type, range for target type, in which case result is undefined

such as double to float

Floating-point type Loss of fractional part; original value might be out of range
to integer type for target type, in which case result is undefined

Bigger integer type Original value might be out of range for target type; typically
to smaller integer type, just the low-order bytes are copied

such as long to short

A zero value assigned to a bool variable is converted to false, and a nonzero value is con-
verted to true.

Assigning floating-point values to integer types poses a couple problems. First, converting
floating-point to integer results in truncating the number (discarding the fractional part).
Second, a float value might be too big to fit in a cramped int variable. In that case, C++
doesn’t define what the result should be; that means different implementations can respond
differently. Listing 3.13 shows a few conversions by assignment.

LISTING 3.13 assign.cpp

// assign.cpp -- type changes on assignment
#include <iostream>
int main()

{

using namespace std;

cout.setf(ios_base::fixed, ios_base::floatfield);
float tree = 3; // int converted to float

int guess = 3.9832; // float converted to int
int debt = 7.2E12; // result not defined in C++

cout << "tree = " << tree << endl;
cout << "guess = " << guess << endl;
cout << "debt = " << debt << endl;
return 0;

102

C++ PRIMER PLUS, FIFTH EDITION

Here is the output from the program in Listing 3.13 for one system:

tree = 3.000000
guess = 3
debt = 1634811904

In this case, tree is assigned the floating-point value 3.0. Assigning 3.9832 to the int variable
guess causes the value to be truncated to 3; C++ uses truncation (discarding the fractional
part) and not rounding (finding the closest integer value) when converting floating-point types
to integer types. Finally, note that the int variable debt is unable to hold the value 7.2E12.
This creates a situation in which C++ doesn’t define the result. On this system, debt ends up
with the value 1634811904, or about 1.6E09. Well, that’s a novel way to reduce massive
indebtedness!

Some compilers warn you of possible data loss for those statements that initialize integer vari-
ables to floating-point values. Also, the value displayed for debt varies from compiler to com-
piler. For example, running the same program from Listing 3.13 on a second system produced
a value of 2147483647.

Conversions in Expressions

Consider what happens when you combine two different arithmetic types in one expression.
C++ makes two kinds of automatic conversions in that case. First, some types are automati-

cally converted whenever they occur. Second, some types are converted when they are com-
bined with other types in an expression.

First, let’s examine the automatic conversions. When it evaluates expressions, C++ converts
bool, char, unsigned char, signed char, and short values to int. In particular, true is pro-
moted to 1 and false to 0. These conversions are termed integral promotions. For example,
consider the following fowl statements:

short chickens = 20; // line 1
short ducks = 35; // line 2
short fowl = chickens + ducks; // line 3

To execute the statement on line 3, a C++ program takes the values of chickens and ducks
and converts both to int. Then, the program converts the result back to type short because
the answer is assigned to a type short variable. You might find this a bit roundabout, but it
does make sense. The int type is generally chosen to be the computer’s most natural type,
which means the computer probably does calculations fastest for that type.

There’s some more integral promotion: The unsigned short type is converted to int if short
is smaller than int. If the two types are the same size, unsigned short is converted to
unsigned int. This rule ensures that there’s no data loss in promoting unsigned short.
Similarly, wehar_t is promoted to the first of the following types that is wide enough to accom-
modate its range: int, unsigned int, long, or unsigned long.

Then there are the conversions that take place when you arithmetically combine different
types, such as adding an int to a float. When an operation involves two types, the smaller is
converted to the larger. For example, the program in Listing 3.11 divides 9.0 by 5. Because 9.0

Chapter 3 ¢ DEALING WITH DATA 103

is type double, the program converts 5 to type double before it does the division. More gener-
ally, the compiler goes through a checklist to determine which conversions to make in an
arithmetic expression. Here’s the list, which the compiler goes through in order:

1. If either operand is type long double, the other operand is converted to long double.
Otherwise, if either operand is double, the other operand is converted to double.
Otherwise, if either operand is float, the other operand is converted to float.

Otherwise, the operands are integer types and the integral promotions are made.

A

In that case, if either operand is unsigned long, the other operand is converted to
unsigned long.

6. Otherwise, if one operand is long int and the other is unsigned int, the conversion
depends on the relative sizes of the two types. If long can represent possible unsigned
int values, unsigned int is converted to long.

7. Otherwise, both operands are converted to unsigned long.

8. Otherwise, if either operand is long, the other is converted to long.

9. Otherwise, if either operand is unsigned int, the other is converted to unsigned int.
10. 1If the compiler reaches this point in the list, both operands should be int.

ANSI C follows the same rules as C++, but classic K&R C has slightly different rules. For
example, classic C always promotes float to double, even if both operands are float.

Conversions in Passing Arguments

Normally, C++ function prototyping controls type conversions for the passing of arguments, as
you'll learn in Chapter 7, “Functions: C++s Programming Modules.” However, it is possible,
although usually unwise, to waive prototype control for argument passing. In that case, C++
applies the integral promotions to the char and short types (signed and unsigned). Also, to
preserve compatibility with huge amounts of code in classic C, C++ promotes float argu-
ments to double when passing them to a function that waives prototyping.

Type Casts

C++ empowers you to force type conversions explicitly via the type cast mechanism. (C++ rec-
ognizes the need for type rules, and it also recognizes the need to occasionally override those
rules.) The type cast comes in two forms. For example, to convert an int value stored in a
variable called thorn to type long, you can use either of the following expressions:

(long) thorn // returns a type long conversion of thorn
long (thorn) // returns a type long conversion of thorn

The type cast doesn't alter the thorn variable itself; instead, it creates a new value of the indi-
cated type, which you can then use in an expression, as in the following:

cout << int('Q"); // displays the integer code for 'Q'

104

C++ PRIMER PLUS, FIFTH EDITION

More generally, you can do the following:

(typeName) value // converts value to typeName type
typeName (value) // converts value to typeName type

The first form is straight C. The second form is pure C++. The idea behind the new form is to
make a type cast look like a function call. This makes type casts for the built-in types look like
the type conversions you can design for user-defined classes.

C++ also introduces four type cast operators that are more restrictive in how they can be used.
Chapter 15, “Friends, Exceptions, and More,” covers them. Of the four, the static_cast<>
operator, can be used for converting values from one numeric type to another. For example,
using it to convert thorn to a type long value looks like this:

static_cast<long> (thorn) // returns a type long conversion of thorn

More generally, you can do the following:

static_cast<typeName> (value) // converts value to typeName type

As Chapter 15 discusses further, Stroustrup felt that the traditional C-style type cast is danger-
ously unlimited in its possibilities.

Listing 3.14 briefly illustrates both forms. Imagine that the first section of this listing is part of
a powerful ecological modeling program that does floating-point calculations that are con-
verted to integral numbers of birds and animals. The results you get depend on when you con-
vert. The calculation for auks first adds the floating-point values and then converts the sum to
int upon assignment. But the calculations for bats and coots first use type casts to convert
the floating-point values to int and then sum the values. The final part of the program shows
how you can use a type cast to display the ASCII code for a type char value.

LISTING 3.14 typecast.cpp

/| typecast.cpp -- forcing type changes
#include <iostream>
int main()
{
using namespace std;
int auks, bats, coots;

/] the following statement adds the values as double,
// then converts the result to int
auks = 19.99 + 11.99;

// these statements add values as int

bats = (int) 19.99 + (int) 11.99; // old C syntax
coots = int (19.99) + int (11.99); // new C++ syntax
cout << "auks = " << auks << ", bats = " << bats;
cout << ", coots = " << coots << endl;

Chapter 3 ¢ DEALING WITH DATA 105

LISTING 3.14 Continued

char ch = 'Z';

cout << "The code for " << ch << " is "; // print as char
cout << int(ch) << endl; // print as int
return 0;

}
Here is the result of the program in Listing 3.14:

auks = 31, bats = 30, coots = 30
The code for Z is 90

First, adding 19.99 to 11.99 yields 31.98. When this value is assigned to the int variable
auks, it’s truncated to 31. But using type casts truncates the same two values to 19 and 11
before addition, making 30 the result for both bats and coots. The final cout statement uses
a type cast to convert a type char value to int before it displays the result. This causes cout to
print the value as an integer rather than as a character.

This program illustrates two reasons to use type casting. First, you might have values that are
stored as type double but are used to calculate a type int value. For example, you might be
fitting a position to a grid or modeling integer values, such as populations, with floating-point
numbers. You might want the calculations to treat the values as int. Type casting enables you
to do so directly. Notice that you get a different result, at least for these values, when you con-
vert to int and add than you do when you add first and then convert to int.

The second part of the program shows the most common reason to use a type cast: the capa-
bility to compel data in one form to meet a different expectation. In Listing 3.14, for example,
the char variable ch holds the code for the letter Z. Using cout with ch displays the character
Z because cout zeros in on the fact that ch is type char. But by type casting ch to type int,
you get cout to shift to int mode and print the ASCII code stored in ch.

Summary

C++5 basic types fall into two groups. One group consists of values that are stored as integers.
The second group consists of values that are stored in floating-point format. The integer types
differ from each other in the amount of memory used to store values and in whether they are
signed or unsigned. From smallest to largest, the integer types are bool, char, signed char,
unsigned char, short, unsigned short, int, unsigned int, long, and unsigned long.
There is also a wehar_t type whose placement in this sequence of size depends on the imple-
mentation. C++ guarantees that char is large enough to hold any member of the system’ basic
character set, wechar_t can hold any member of the system’s extended character set, short is at
least 16 bits, int is at least as big as short, and long is at least 32 bits and at least as large as
int. The exact sizes depend on the implementation.

Characters are represented by their numeric codes. The 1/O system determines whether a code
is interpreted as a character or as a number.

106

C++ PRIMER PLUS, FIFTH EDITION

The floating-point types can represent fractional values and values much larger than integers
can represent. The three floating-point types are float, double, and long double. C++ guar-
antees that float is no larger than double and that double is no larger than long double.
Typically, float uses 32 bits of memory, double uses 64 bits, and long double uses 80 to 128
bits.

By providing a variety of types in different sizes and in both signed and unsigned varieties,
C++ lets you match the type to particular data requirements.

C++ uses operators to provide the usual arithmetical support for numeric types: addition, subtrac-
tion, multiplication, division, and taking the modulus. When two operators seek to operate on the
same value, C++5 precedence and associativity rules determine which operation takes place first.

C++ converts values from one type to another when you assign values to a variable, mix types
in arithmetic, and use type casts to force type conversions. Many type conversions are “safe,”

meaning you can make them with no loss or alteration of data. For example, you can convert
an int value to a long value with no problems. Others, such as conversions of floating-point

types to integer types, require more care.

At first, you might find the large number of basic C++ types a little excessive, particularly
when you take into account the various conversion rules. But most likely you will eventually
find occasions when one of the types is just what you need at the time, and you'll thank C++
for having it.

Review Questions

1. Why does C++ have more than one integer type?

2. Declare variables matching the following descriptions:
a. A short integer with the value 80
b. An unsigned int integer with the value 42,110
c. An integer with the value 3,000,000,000

3. What safeguards does C++ provide to keep you from exceeding the limits of an integer
type?

4. What is the distinction between 33L and 33?

5. Consider the two C++ statements that follow:

char grade = 65;
char grade = 'A';

Are they equivalent?

6. How could you use C++ to find out which character the code 88 represents? Come up
with at least two ways.

Chapter 3 ¢ DEALING WITH DATA 107

7. Assigning a long value to a float can result in a rounding error. What about assigning
long to double?

8. Evaluate the following expressions as C++ would:
a. 8%9+2
b. 6*3/4
c. 3/4%6
d. 6.0*%3/4
e. 15%4

9. Suppose x1 and x2 are two type double variables that you want to add as integers and
assign to an integer variable. Construct a C++ statement for doing so.

Programming Exercises

1. Write a short program that asks for your height in integer inches and then converts your
height to feet and inches. Have the program use the underscore character to indicate
where to type the response. Also, use a const symbolic constant to represent the conver-
sion factor.

2. Write a short program that asks for your height in feet and inches and your weight in
pounds. (Use three variables to store the information.) Have the program report your
body mass index (BMI). To calculate the BMI, first convert your height in feet and inches
to your height in inches (1 foot = 12 inches). Then, convert your height in inches to
your height in meters by multiplying by 0.0254. Then, convert your weight in pounds
into your mass in kilograms by dividing by 2.2. Finally, compute your BMI by dividing
your mass in kilograms by the square of your height in meters. Use symbolic constants
to represent the various conversion factors.

3. Write a program that asks the user to enter a latitude in degrees, minutes, and seconds
and that then displays the latitude in decimal format. There are 60 seconds of arc to a
minute and 60 minutes of arc to a degree; represent these values with symbolic con-
stants. You should use a separate variable for each input value. A sample run should
look like this:

Enter a latitude in degrees, minutes, and seconds:
First, enter the degrees: 37

Next, enter the minutes of arc: 51

Finally, enter the seconds of arc: 19

37 degrees, 51 minutes, 19 seconds = 37.8553 degrees

4. Write a program that asks the user to enter the number of seconds as an integer value
(use type long) and that then displays the equivalent time in days, hours, minutes, and
seconds. Use symbolic constants to represent the number of hours in the day, the num-

108 C++ PRIMER PLUS, FIFTH EDITION

ber of minutes in an hour, and the number of seconds in a minute. The output should
look like this:

Enter the number of seconds: 31600000
31600000 seconds = 365 days, 46 minutes, 40 seconds

5. Write a program that asks how many miles you have driven and how many gallons of
gasoline you have used and then reports the miles per gallon your car has gotten. Or, if
you prefer, the program can request distance in kilometers and petrol in liters and then
report the result European style, in liters per 100 kilometers.

6. Write a program that asks you to enter an automobile gasoline consumption figure in the
European style (liters per 100 kilometers) and converts to the U.S. style of miles per gal-
lon. Note that in addition to using different units of measurement, the U.S approach
(distance / fuel) is the inverse of the European approach (fuel / distance). Note that 100
kilometers is 62.14 miles, and 1 gallon is 3.875 liters. Thus, 19 mpg is about 12.4 /100
km, and 27 mpg is about 8.7 1/100 km.

CHAPTER 4

COMPOUND TYPES

In this chapter you'll learn about the following:

e How to create and use arrays e How to create and use unions

e How to create and use C-style e How to create and use enumera-
strings tions

e How to create and use string- e How to create and use pointers

class strings .
* How to manage dynamic memory

e How to use the getline() and with new and delete

t () methods for reading strings .
get() 9 9 e How to create dynamic arrays

e How to mix string and numeric .
. 9 e How to create dynamic structures

input

e Automatic, static, and dynamic

e How to create and use structures
storage

ay you've developed a computer game called User-Hostile in which players match

wits with a cryptic and abusive computer interface. Now you must write a program

that keeps track of your monthly game sales for a five-year period. Or you want to
inventory your accumulation of hacker-hero trading cards. You soon conclude that you need
something more than C++% simple basic types to meet these data requirements, and C++ offers
something more—compound types. These are types built from the basic integer and floating-
point types. The most far-reaching compound type is the class, that bastion of OOP toward
which we are progressing. But C++ also supports several more modest compound types taken
from C. The array, for example, can hold several values of the same type. A particular kind of
array can hold a string, which is a series of characters. Structures can hold several values of
differing types. Then there are pointers, which are variables that tell a computer where data is
placed. You'll examine all these compound forms (except classes) in this chapter, take a first
look at new and delete and how you can use them to manage data, and take an introductory
look at the C++ string class, which gives you an alternative way to work with strings.

110

C++ PRIMER PLUS, FIFTH EDITION

Introducing Arrays

An array is a data form that can hold several values, all of one type. For example, an array can
hold 60 type int values that represent five years of game sales data, 12 short values that rep-
resent the number of days in each month, or 365 float values that indicate your food
expenses for each day of the year. Each value is stored in a separate array element, and the
computer stores all the elements of an array consecutively in memory.

To create an array, you use a declaration statement. An array declaration should indicate three
things:

 The type of value to be stored in each element
e The name of the array
e The number of elements in the array

You accomplish this in C++ by modifying the declaration for a simple variable and adding
brackets that contain the number of elements. For example, the declaration

short months[12]; // creates array of 12 short

creates an array named months that has 12 elements, each of which can hold a type short
value. Each element, in essence, is a variable that you can treat as a simple variable.

This is the general form for declaring an array:

typeName arrayName|[arraySize];

The expression arraySize, which is the number of elements, must be an integer constant,
such as 10 or a const value, or a constant expression, such as 8 * sizeof (int), for which
all values are known at the time compilation takes place. In particular, arraySize cannot be a
variable whose value is set while the program is running. However, later in this chapter you'll
learn how to use the new operator to get around that restriction.

The Array as Compound Type

An array is called a compound type because it is built from some other type. (C uses the term derived
type, but, because C++ uses the term derived for class relationships, it had to come up with a new
term.) You can't simply declare that something is an array; it always has to be an array of some par-
ticular type. There is no generalized array type. Instead, there are many specific array types, such as
array of char or array of long. For example, consider this declaration:

float loans[20];

The type for loans is not “array”; rather, it is “array of float.” This emphasizes that the loans array
is built from the float type.

Much of the usefulness of the array comes from the fact that you can access array elements
individually. The way to do this is to use a subscript, or an index, to number the elements. C++
array numbering starts with zero. (This is nonnegotiable; you have to start at zero. Pascal and

Chapter 4 ¢« COMPOUND TYPES

BASIC users will have to adjust.) C++ uses a bracket notation with the index to specify an
array element. For example, months[@] is the first element of the months array, and
months[11] is the last element. Note that the index of the last element is one less than the size
of the array. (See Figure 4.1.) Thus, an array declaration enables you to create a lot of variables
with a single declaration, and you can then use an index to identify and access individual

elements.
FIGURE 4.1 int ragnar[7]; b
. subscripts
Creating an array. e 1 2 3 4 5 8 (or indices)
HERRTT e

[| S third element

second element

first element

ragnar is an array holding seven values,
each of which is a type int variable

The Importance of Valid Subscript Values

The compiler does not check to see if you use a valid subscript. For instance, the compiler won't
complain if you assign a value to the nonexistent element months[101]. But that assignment could
cause problems when the program runs, possibly corrupting data or code, possibly causing the pro-
gram to abort. So it is your responsibility to make sure that your program uses only valid subscript
values.

The yam analysis program in Listing 4.1 demonstrates a few properties of arrays, including
declaring an array, assigning values to array elements, and initializing an array.

LISTING 4.1 arrayone.cpp

// arrayone.cpp -- small arrays of integers
#include <iostream>

int main()

{
using namespace std;
int yams[3]; // creates array with three elements
yams[Q] = 7; // assign value to first element
yams[1] = 8;
yams[2] = 6;

int yamcosts[3] = {20, 30, 5}; // create, initialize array
// NOTE: If your C++ compiler or translator can't initialize
// this array, use static int yamcosts[3] instead of
// int yamcosts[3]

112 C++ PRIMER PLUS, FIFTH EDITION

LISTING 4.1 Continued

cout << "Total yams = ";

cout << yams[@] + yams[1] + yams[2] << endl;

cout << "The package with " << yams[1] << " yams costs ";
cout << yamcosts[1] << " cents per yam.\n";

int total = yams[@] * yamcosts[@] + yams[1] * yamcosts[1];
total = total + yams[2] * yamcosts[2];

cout << "The total yam expense is " << total << " cents.\n";

cout << "\nSize of yams array = " << sizeof yams;
cout << " bytes.\n";

cout << "Size of one element = " << sizeof yams[0];
cout << " bytes.\n";

return 0;

g Compatibility Note

Current versions of C++, as well as ANSI C, allow you to initialize ordinary arrays defined in a func-
tion. However, in some older implementations that use a C++ translator instead of a true compiler,
the C++ translator creates C code for a C compiler that is not fully ANSI C compliant. In such a case,
you can get an error message like the following example from a Sun C++ 2.0 system:

"arrayone.cc", line 10: sorry, not implemented: initialization of
yamcosts (automatic aggregate) Compilation failed

The fix is to use the keyword static in the array declaration:

// pre-ANSI initialization

static int yamcosts[3] = {20, 30, 5};

The keyword static causes the compiler to use a different memory scheme for storing the array,
one that allows initialization even under pre-ANSI C. Chapter 9, “Memory Models and
Namespaces,” discusses this use of static.

Here is the output from the program in Listing 4.1:

Total yams = 21

The package with 8 yams costs 30 cents per yam.
The total yam expense is 410 cents.

Size of yams array = 12 bytes.

Size of one element = 4 bytes.

Program Notes

First, the program in Listing 4.1 creates a three-element array called yams. Because yams has
three elements, the elements are numbered from 0 through 2, and arrayone.cpp uses index
values of @ through 2 to assign values to the three individual elements. Each individual yam
element is an int with all the rights and privileges of an int type, so arrayone.cpp can, and
does, assign values to elements, add elements, multiply elements, and display elements.

Chapter 4 ¢« COMPOUND TYPES

The program uses the long way to assign values to the yam elements. C++ also lets you initial-
ize array elements within the declaration statement. Listing 4.1 uses this shortcut to assign val-
ues to the yamcosts array:

int yamcosts[3] = {20, 30, 5};

It simply provides a comma-separated list of values (the initialization list) enclosed in braces.
The spaces in the list are optional. If you don' initialize an array that’s defined inside a func-
tion, the element values remain undefined. That means the element takes on whatever value
previously resided at that location in memory.

Next, the program uses the array values in a few calculations. This part of the program looks
cluttered with all the subscripts and brackets. The for loop, coming up in Chapter 5, “Loops
and Relational Expressions,” provides a powerful way to deal with arrays and eliminates the
need to write each index explicitly. For the time being, we'll stick to small arrays.

As you should recall, the sizeof operator returns the size, in bytes, of a type or data object.
Note that if you use the sizeof operator with an array name, you get the number of bytes in
the whole array. But if you use sizeof with an array element, you get the size, in bytes, of the
element. This illustrates that yams is an array, but yams[1] is just an int.

Initialization Rules for Arrays

C++ has several rules about initializing arrays. They restrict when you can do it, and they
determine what happens if the number of array elements doesn’t match the number of values
in the initializer. Let’s examine these rules.

You can use the initialization form only when defining the array. You cannot use it later, and
you cannot assign one array wholesale to another:

int cards[4] = {3, 6, 8, 10}; /] okay
int hand[4]; /| okay
hand[4] = {5, 6, 7, 9}; // not allowed
hand = cards; // not allowed

However, you can use subscripts and assign values to the elements of an array individually.
When initializing an array, you can provide fewer values than array elements. For example, the
following statement initializes only the first two elements of hotelTips:

float hotelTips[5] = {5.0, 2.5};

If you partially initialize an array, the compiler sets the remaining elements to zero. Thus, it’s

easy to initialize all the elements of an array to zero—just explicitly initialize the first element
to zero and then let the compiler initialize the remaining elements to zero:

long totals[500] = {0};

Note that if you initialize to {1} instead of to {0}, just the first element is set to 1; the rest still
get set to 0.

113

114

C++ PRIMER PLUS, FIFTH EDITION

If you leave the square brackets ([1) empty when you initialize an array, the C++ compiler
counts the elements for you. Suppose, for example, that you make this declaration:

short things[] = {1, 5, 3, 8};

The compiler makes things an array of four elements.

Letting the Compiler Do It

Normally, letting the compiler count the number of elements is poor practice, for its count can be
different from what you think it is. However, this approach can be a safe one for initializing a charac-
ter array to a string, as you'll soon see. And if your main concern is that the program, not you,
knows how large an array is, you can do something like this:

short things[] = {1, 5, 3, 8};

int num_elements = sizeof things / sizeof (short);

Whether this is useful or lazy depends on the circumstances.

The C++ Standard Template Library (STL) provides an alternative to arrays called the vector
template class. This alternative is more sophisticated and flexible than the built-in array com-
posite type. Chapter 16, “The string Class and the Standard Template Library,” discusses the
STL and the vector template class.

Strings

A string is a series of characters stored in consecutive bytes of memory. C++ has two ways of
dealing with strings. The first, taken from C and often called a C-style string, is the first one
this chapter examines. Later, this chapter discusses an alternative method based on a string
class library.

The idea of a series of characters stored in consecutive bytes implies that you can store a string
in an array of char, with each character kept in its own array element. Strings provide a conve-
nient way to store text information, such as messages to the user (“Please tell me your secret
Swiss bank account number”) or responses from the user (“You must be joking”). C-style strings
have a special feature: The last character of every string is the null character. This character,
written \0, is the character with ASCII code 0, and it serves to mark the string’s end. For
example, consider the following two declarations:

char dog [5] = { 'b', 'e', 'a', 'u', 'x'}; // not a string!

char cat[5] = {'f', 'a', 't', 's', '\0'}; // a string!

Both of these arrays are arrays of char, but only the second is a string. The null character plays
a fundamental role in C-style strings. For example, C++ has many functions that handle
strings, including those used by cout. They all work by processing a string character-by-char-
acter until they reach the null character. If you ask cout to display a nice string like cat in the
preceding example, it displays the first four characters, detects the null character, and stops.
But if you are ungracious enough to tell cout to display the dog array from the preceding

Chapter 4 ¢« COMPOUND TYPES 115

example, which is not a string, cout prints the five letters in the array and then keeps march-
ing through memory byte-by-byte, interpreting each byte as a character to print, until it
reached a null character. Because null characters, which really are bytes set to zero, tend to be
common in memory, the damage is usually contained quickly; nonetheless, you should not
treat nonstring character arrays as strings.

The cat array example makes initializing an array to a string look tedious—all those single
quotes and then having to remember the null character. Don’t worry. There is a better way to
initialize a character array to a string. Just use a quoted string, called a string constant or string
literal, as in the following:

char bird[10] = "Mr. Cheeps"; // the \@ is understood
char fish[] = "Bubbles"; // let the compiler count

Quoted strings always include the terminating null character implicitly, so you don’t have to
spell it out. (See Figure 4.2.) Also, the various C++ input facilities for reading a string from
keyboard input into a char array automatically add the terminating null character for you. (If,
when you run the program in Listing 4.1, you discover that you have to use the keyword
static to initialize an array, you have to use it with these char arrays, too.)

FIGURE 4.2 char boss[8] = "Bozo";
Initializing an array to a
string.
B (] z 0 \0 \0 \o \0

.)
— v
null character ~ remaimning

automatically ~ elements
added at end setto \0

Of course, you should make sure the array is large enough to hold all the characters of the
string, including the null character. Initializing a character array with a string constant is one
case where it may be safer to let the compiler count the number of elements for you. There is
no harm, other than wasted space, in making an array larger than the string. That’s because
functions that work with strings are guided by the location of the null character, not by the
size of the array. C++ imposes no limits on the length of a string.

Remember

When determining the minimum array size necessary to hold a string, remember to include the ter-
minating null character in your count.

Note that a string constant (with double quotes) is not interchangeable with a character con-
stant (with single quotes). A character constant, such as 'S, is a shorthand notation for the

116

C++ PRIMER PLUS, FIFTH EDITION

code for a character. On an ASCII system, 'S' is just another way of writing 83. Thus, the
statement

char shirt_size = 'S'; /] this is fine
assigns the value 83 to shirt_size. But "S" represents the string consisting of two characters,

the 8 and the \@ characters. Even worse, "S" actually represents the memory address at which
the string is stored. So a statement like

char shirt_size = "S"; // illegal type mismatch
attempts to assign a memory address to shirt_size! Because an address is a separate type in

C++, a C++ compiler won't allow this sort of nonsense. (We'll return to this point later in this
chapter, after we've discussed pointers.)

Concatenating String Constants

Sometimes a string may be too long to conveniently fit on one line of code. C++ enables you to
concatenate string constants—that is, to combine two quoted strings into one. Indeed, any
two string constants separated only by whitespace (spaces, tabs, and newlines) are automati-
cally joined into one. Thus, all the following output statements are equivalent to each other:
cout << "I'd give my right arm to be" " a great violinist.\n";

cout << "I'd give my right arm to be a great violinist.\n";

cout << "I'd give my right ar"

"m to be a great violinist.\n";

Note that the join doesn’t add any spaces to the joined strings. The first character of the sec-
ond string immediately follows the last character, not counting \@, of the first string. The \@
character from the first string is replaced by the first character of the second string.

Using Strings in an Array

The two most common ways of getting a string into an array are to initialize an array to a
string constant and to read keyboard or file input into an array. Listing 4.2 demonstrates these
approaches by initializing one array to a quoted string and using cin to place an input string
in a second array. The program also uses the standard library function strlen() to get the
length of a string. The standard cstring header file (or string.h for older implementations)
provides declarations for this and many other string-related functions.

LISTING 4.2 strings.cpp

// strings.cpp -- storing strings in an array
#include <iostream>
#include <cstring> // for the strlen() function
int main()
{

using namespace std;

const int Size = 15;

char namei[Size]; // empty array

Chapter 4 ¢« COMPOUND TYPES

LISTING 4.2 Continued

char name2[Size] = "C++owboy"; // initialized array
// NOTE: some implementations may require the static keyword
// to initialize the array name2

cout << "Howdy! I'm " << name2;

cout << "! What's your name?\n";

cin >> namefl;

cout << "Well, " << namel << ", your name has ";

cout << strlen(namel) << " letters and is stored\n";
cout << "in an array of " << sizeof(namel) << " bytes.\n";
cout << "Your initial is " << namel[Q] << ".\n";
name2[3] = '"\0'; // null character

cout << "Here are the first 3 characters of my name: ";
cout << name2 << endl;

return 0;

® Compatibility Note

If your system doesn't provide the cstring header file, try the older string.h version.

Here is a sample run of the program in Listing 4.2:

Howdy! I'm C++owboy! What's your name?

Basicman

Well, Basicman, your name has 8 letters and is stored
in an array of 15 bytes.

Your initial is B.

Here are the first 3 characters of my name: C++

Program Notes

What can you learn from Listing 4.2? First, note that the sizeof operator gives the size of the
entire array, 15 bytes, but the strlen() function returns the size of the string stored in the
array and not the size of the array itself. Also, strlen() counts just the visible characters and
not the null character. Thus, it returns a value of 8, not 9, for the length of Basicman. If
cosmic is a string, the minimum array size for holding that string is strlen(cosmic) + 1.

Because name1 and name2 are arrays, you can use an index to access individual characters in
the array. For example, the program uses name1[@] to find the first character in that array.
Also, the program sets name2[3] to the null character. That makes the string end after three
characters, even though more characters remain in the array. (See Figure 4.3.)

Note that the program in Listing 4.2 uses a symbolic constant for the array size. Often, the size
of an array appears in several statements in a program. Using a symbolic constant to represent
the size of an array simplifies revising the program to use a different array size; you just have to
change the value once, where the symbolic constant is defined.

118

C++ PRIMER PLUS, FIFTH EDITION
FIGURE 4.3 const int ArSize = 15;
. . char name2[ArSize] = "C++owboy";
Shortening a string]
with \o. string
r N

name2[3] = '\0';
string

v

ignored

Adventures in String Input

The strings.cpp program has a blemish that is concealed through the often useful technique
of carefully selected sample input. Listing 4.3 removes the veils and shows that string input
can be tricky.

LISTING 4.3 instri.cpp

// instri.cpp -- reading more than one string
#include <iostream>

int main()

{

using namespace std;
const int ArSize = 20;
char name[ArSize];
char dessert[ArSize];

cout << "Enter your name:\n";

cin >> name;

cout << "Enter your favorite dessert:\n";
cin >> dessert;

cout << "I have some delicious " << dessert;
cout << " for you, " << name << ".,\n";
return 0;

}

The intent of the program in Listing 4.3 is simple: Read a user’s name and favorite dessert
from the keyboard and then display the information. Here is a sample run:

Enter your name:

Alistair Dreeb

Enter your favorite dessert:

I have some delicious Dreeb for you, Alistair.

Chapter 4 ¢« COMPOUND TYPES 119

We didn’t even get a chance to respond to the dessert prompt! The program showed it and
then immediately moved on to display the final line.

The problem lies with how cin determines when you've finished entering a string. You can’t
enter the null character from the keyboard, so cin needs some other means for locating the
end of a string. The cin technique is to use whitespace—spaces, tabs, and newlines—to delin-
eate a string. This means cin reads just one word when it gets input for a character array. After
it reads this word, cin automatically adds the terminating null character when it places the
string into the array.

The practical result in this example is that cin reads Alistair as the entire first string and
puts it into the name array. This leaves poor Dreeb still sitting in the input queue. When cin
searches the input queue for the response to the favorite dessert question, it finds Dreeb still
there. Then cin gobbles up Dreeb and puts it into the dessert array. (See Figure 4.4.)

FIGURE 4.4 first string second string
The cin view of string | [
input. Alistair | | Dreeb ENTER
Read first string, Read second string,
add a null character, add a null character,
place in the name array. place in the dessert array.
Alistair\0 | | Dreeb\@

Another problem, which didn't surface in the sample run, is that the input string might turn
out to be longer than the destination array. Using cin as this example did offers no protection
against placing a 30-character string in a 20-character array.

Many programs depend on string input, so its worthwhile to explore this topic further. We'll
have to draw on some of the more advanced features of cin, which are described in Chapter
17, “Input, Output, and Files.”

Reading String Input a Line at a Time

Reading string input a word at a time is often not the most desirable choice. For instance, sup-
pose a program asks the user to enter a city, and the user responds with New York or Sao
Paulo. You would want the program to read and store the full names, not just New and Sao. To
be able to enter whole phrases instead of single words as a string, you need a different
approach to string input. Specifically, you need a line-oriented method instead of a word-
oriented method. You are in luck, for the istream class, of which cin is an example, has some
line-oriented class member functions: getline() and get(). Both read an entire input line—
that is, up until a newline character. However, getline() then discards the newline character,
whereas get () leaves it in the input queue. Let’s look at the details, beginning with
getline().

120

C++ PRIMER PLUS, FIFTH EDITION

Line-Oriented Input with getline()

The getline () function reads a whole line, using the newline character transmitted by the
Enter key to mark the end of input. You invoke this method by using cin.getline() as a
function call. The function takes two arguments. The first argument is the name of the array
destined to hold the line of input, and the second argument is a limit on the number of char-
acters to be read. If this limit is, say, 20, the function reads no more than 19 characters, leaving
room to automatically add the null character at the end. The getline () member function
stops reading input when it reaches this numeric limit or when it reads a newline character,
whichever comes first.

For example, suppose you want to use getline() to read a name into the 20-element name
array. You would use this call:

cin.getline(name,20);
This reads the entire line into the name array, provided that the line consists of 19 or fewer

characters. (The getline() member function also has an optional third argument, which
Chapter 17 discusses.)

Listing 4.4 modifies Listing 4.3 to use cin.getline() instead of a simple cin. Otherwise, the
program is unchanged.

LISTING4.4 instr2.cpp

// instr2.cpp -- reading more than one word with getline
#include <iostream>

int main()

{

using namespace std;
const int ArSize = 20;
char name[ArSize];
char dessert[ArSize];

cout << "Enter your name:\n";

cin.getline(name, ArSize); // reads through newline
cout << "Enter your favorite dessert:\n";
cin.getline(dessert, ArSize);

cout << "I have some delicious " << dessert;

cout << " for you, " << name << ".\n";

return 0;

@ Compatibility Note

Some early C++ versions don't fully implement all facets of the current C++ I/O package. In particu-
lar, the getline () member function isn't always available. If this affects you, just read about this
example and go on to the next one, which uses a member function that predates getline(). Early
releases of Turbo C++ implement getline() slightly differently so that it does store the newline
character in the string. Microsoft Visual C++ 5.0 and 6.0 have a bug in getline() as implemented
in the iostream header file but not in the ostream.h version; Service Pack 5 for Microsoft Visual
C++ 6.0, available at the msdn.microsoft.com/vstdio website, fixes that bug.

FIGURE 4.5

getline() reads and
replaces the newline Code:
character.

Chapter 4 ¢« COMPOUND TYPES

Here is some sample output for Listing 4.4:

Enter your name:

Dirk Hammernose

Enter your favorite dessert:

Radish Torte

I have some delicious Radish Torte for you, Dirk Hammernose.

The program now reads complete names and delivers the user her just desserts! The
getline() function conveniently gets a line at a time. It reads input through the newline
character marking the end of the line, but it doesn’t save the newline character. Instead, it
replaces it with a null character when storing the string. (See Figure 4.5.)

char name[10];
cout << "Enter your name: ";
cin.getline(name, 10);

User responds by typing Jud, then pressing

Enter your name: Jud

cin.getline() responds by reading Jud, reading the
newline generated by the Enter key, and replacing it
with a null character.

newline replaced with a null character.

Line-Oriented Input with get ()

Let’s try another approach. The istream class has another member function, get (), which
comes in several variations. One variant works much like getline (). It takes the same argu-
ments, interprets them the same way, and reads to the end of a line. But rather than read and
discard the newline character, get () leaves that character in the input queue. Suppose you use
two calls to get () in a row:

cin.get(name, ArSize);
cin.get(dessert, Arsize); // a problem

121

122 C++ PRIMER PLUS, FIFTH EDITION

Because the first call leaves the newline character in the input queue, that newline character is
the first character the second call sees. Thus, get () concludes that its reached the end of line
without having found anything to read. Without help, get () just can't get past that newline
character.

Fortunately, there is help in the form of a variation of get (). The call cin.get() (with no
arguments) reads the single next character, even if it is a newline, so you can use it to dispose
of the newline character and prepare for the next line of input. That is, this sequence works:

cin.get(name, ArSize); // read first line
cin.get(); // read newline
cin.get(dessert, Arsize); // read second line

Another way to use get () is to concatenate, or join, the two class member functions, as fol-
lows:

cin.get(name, ArSize).get(); // concatenate member functions

What makes this possible is that cin.get(name, ArSize) returns the cin object, which is
then used as the object that invokes the get () function. Similarly, the statement

cin.getline(namel, ArSize).getline(name2, ArSize);

reads two consecutive input lines into the arrays name1 and name2; it’s equivalent to making
two separate calls to cin.getline().

Listing 4.5 uses concatenation. In Chapter 11, “Working with Classes,” you'll learn how to
incorporate this feature into your class definitions.

LISTING 4.5 instr3.cpp

// instr3.cpp -- reading more than one word with get() & get()
#include <iostream>
int main()
{
using namespace std;
const int ArSize = 20;
char name[ArSize];
char dessert[ArSize];

cout << "Enter your name:\n";

cin.get(name, ArSize).get(); // read string, newline
cout << "Enter your favorite dessert:\n";
cin.get(dessert, ArSize).get();

cout << "I have some delicious " << dessert;

cout << " for you, " << name << ".\n";

return 0;

Chapter 4 ¢« COMPOUND TYPES 123

@ Compatibility Note

Some older C++ versions don't implement the get () variant that has no arguments. They do, how-
ever, implement yet another get () variant, one that takes a single char argument. To use it instead
of the argument-free get (), you need to declare a char variable first:

char ch;
cin.get(name, ArSize).get(ch);

You can use this code instead of what is found in Listing 4.5. Chapters 5, 6, “Branching Statements
and Logical Operators,” and 17 further discuss the get () variants.

Here is a sample run of the program in Listing 4.5:

Enter your name:

Mai Parfait

Enter your favorite dessert:

Chocolate Mousse

I have some delicious Chocolate Mousse for you, Mai Parfait.

One thing to note is how C++ allows multiple versions of functions, provided that they have dif-

ferent argument lists. If you use, say, cin.get (name, ArSize), the compiler notices you're using
the form that puts a string into an array and sets up the appropriate member function. If, instead,
you use cin.get (), the compiler realizes you want the form that reads one character. Chapter 8,

“Adventures in Functions,” explores this feature, which is called function overloading.

Why use get () instead of getline() at all? First, older implementations may not have
getline(). Second, get() lets you be a bit more careful. Suppose, for example, you used
get () to read a line into an array. How can you tell if it read the whole line rather than
stopped because the array was filled? Look at the next input character. If it is a newline
character, then the whole line was read. If it is not a newline character, then there is still more
input on that line. Chapter 17 investigates this technique. In short, getline() is a little
simpler to use, but get () makes error checking simpler. You can use either one to read a line
of input; just keep the slightly different behaviors in mind.

Empty Lines and Other Problems

What happens after getline() or get() reads an empty line? The original practice was that
the next input statement picked up where the last getline() or get() left off. However, the
current practice is that after get () (but not getline()) reads an empty line, it sets something
called the failbit. The implications of this act are that further input is blocked but you can
restore input with the following command:

cin.clear();
Another potential problem is that the input string could be longer than the allocated space. If
the input line is longer than the number of characters specified, both getline() and get()

leave the remaining characters in the input queue. However, getline() additionally sets the
failbit and turns off further input.

Chapters 5, 6, and 17 investigate these properties and how to program around them.

124 C++ PRIMER PLUS, FIFTH EDITION

Mixing String and Numeric Input

Mixing numeric input with line-oriented string input can cause problems. Consider the simple
program in Listing 4.6.

LISTING 4.6 numstr.cpp

// numstr.cpp -- following number input with line input
#include <iostream>
int main()
{
using namespace std;
cout << "What year was your house built?\n";
int year;
cin >> year;
cout << "What is its street address?\n";
char address[80];
cin.getline(address, 80);

cout << "Year built: " << year << endl;
cout << "Address: " << address << endl;
cout << "Done!\n";

return 0;

}

Running the program in Listing 4.6 would look something like this:

What year was your house built?
1966

What is its street address?
Year built: 1966

Address

Done!

You never get the opportunity to enter the address. The problem is that when cin reads the
year, it leaves the newline generated by the Enter key in the input queue. Then,
cin.getline() reads the newline as an empty line and assigns a null string to the address
array. The fix is to read and discard the newline before reading the address. This can be done
several ways, including by using get () with no argument or with a char argument, as
described in the preceding example. You can make this call separately:

cin >> year;

cin.get(); // or cin.get(ch);

Or you can concatenate the call, making use of the fact that the expression cin >> year
returns the cin object:

(cin >> year).get(); // or (cin >> year).get(ch);
If you make one of these changes to Listing 4.6, it works properly:

What year was your house built?
1966

What is its street address?
43821 Unsigned Short Street

Chapter 4 ¢« COMPOUND TYPES 125

Year built: 1966
Address: 43821 Unsigned Short Street
Done!

C++ programs frequently use pointers instead of arrays to handle strings. We'll take up that
aspect of strings after talking a bit about pointers. Meanwhile, let’s take a look at a more recent
way to handle strings: the C++ string class.

Introducing the string Class

The ISO/ANSI C++ Standard expanded the C++ library by adding a string class. So now,
instead of using a character array to hold a string, you can use a type string variable (or
object, to use C++ terminology). As you'll see, the string class is simpler to use than the array
and also provides a truer representation of a string as a type

To use the string class, a program has to include the string header file. The string class is
part of the std namespace, so you have to provide a using directive or else refer to the class as
std::string. The class definition hides the array nature of a string and lets you treat a string
much like an ordinary variable. Listing 4.7 illustrates some of the similarities and differences
between string objects and character arrays.

LISTING 4.7 strtypel.cpp

// strtypel.cpp -- using the C++ string class
#include <iostream>

#include <string> // make string class available
int main()
{
using namespace std;
char charr1[20]; /] create an empty array
char charr2[20] = "jaguar"; // create an initialized array
string stri; // create an empty string object
string str2 = "panther"; // create an initialized string

cout << "Enter a kind of feline: ";
cin >> charri;
cout << "Enter another kind of feline: ";

cin >> stri; // use cin for input
cout << "Here are some felines:\n";
cout << charrtl << " " << charr2 << " "
<< str1 << " " << str2 // use cout for output
<< endl;

cout << "The third letter in " << charr2 << " is "
<< charr2[2] << endl;

cout << "The third letter in " << str2 << " is "
<< str2[2] << endl; // use array notation

return 0;

126

C++ PRIMER PLUS, FIFTH EDITION

Here is a sample run of the program in Listing 4.7:

Enter a kind of feline: ocelot
Enter another kind of feline: tiger
Here are some felines:

ocelot jaguar tiger panther

The third letter in jaguar is g

The third letter in panther is n

You should learn from this example that in many ways, you can use a string object in the same
manner as a character array:

* You can initialize a string object to a C-style string.

* You can use cin to store keyboard input in a string object.

* You can use cout to display a string object.

* You can use array notation to access individual characters stored in a string object.

The main difference between string objects and character arrays shown in Listing 4.7 is that
you declare a string object as a simple variable, not as an array:

string stri; // create an empty string object
string str2 = "panther"; // create an initialized string

The class design allows the program to handle the sizing automatically. For instance, the decla-
ration for str1 creates a string object of length zero, but the program automatically resizes
str1 when it reads input into stri:

cin >> stri; // str1 resized to fit input
This makes using a string object both more convenient and safer than using an array.

Conceptually, one thinks of an array of char as a collection of char storage units used to store
a string but of a string class variable as a single entity representing the string.

Assignment, Concatenation, and Appending

The string class makes some operations simpler than is the case for arrays. For example, you
can’t simply assign one array to another. But you can assign one string object to another:

char charr1[20]; // create an empty array

char charr2[20] = "jaguar"; // create an initialized array
string stri; /] create an empty string object
string str2 = "panther"; // create an initialized string
charr1 = charr2; // INVALID, no array assignment
str1 = str2; // VALID, object assignment ok

The string class simplifies combining strings. You can use the + operator to add two string
objects together and the += operator to tack on a string to the end of an existing string object.
Continuing with the preceding code, we have the following possibilities:

string str3;

str3 = stri1 + str2; // assign str3 the joined strings
str1 += str2; // add str2 to the end of stri

Chapter 4 ¢« COMPOUND TYPES 127

Listing 4.8 illustrates these usages. Note that you can add and append C-style strings as well as
string objects to a string object.

LISTING 4.8 strtype2.cpp

// strtype2.cpp -- assigning, adding, and appending
#include <iostream>
#include <string> // make string class available
int main()
{
using namespace std;
string s1 = "penguin";
string s2, s3;

cout << "You can assign one string object to another: s2 = s1\n";
s2 = s1;

cout << "st1: " << 81 << ", §2: " << 52 << endl;

cout << "You can assign a C-style string to a string object.\n";
cout << "s2 = \"buzzard\"\n";

s2 = "buzzard";

cout << "s2: " << s2 << endl;

cout << "You can concatenate strings: s3 = s1 + s2\n";

s3 = s1 + s2;

cout << "s3: " << s8 << endl;

cout << "You can append strings.\n";

s1 += s2;

cout <<"s1 += s2 yields s1 = " << s1 << endl;

s2 += " for a day";

cout <<"s2 += \" for a day\" yields s2 = " << s2 << endl;
return 0;

}

Recall that the escape sequence \" represents a double quotation mark that is used as a literal
character rather than as marking the limits of a string. Here is the output from the program in
Listing 4.8:

You can assign one string object to another: s2 = si
s1: penguin, s2: penguin

You can assign a C-style string to a string object.
s2 = "buzzard"

s2: buzzard

You can concatenate strings: s3 = s1 + s2

s3: penguinbuzzard

You can append strings.

s1 += s2 yields s1 = penguinbuzzard

s2 += " for a day" yields s2 = buzzard for a day

More string Class Operations

Even before the string class was added to C++, programmers needed to do things like assign
strings. For C-style strings, they used functions from the C library for these tasks. The cstring

128 C++ PRIMER PLUS, FIFTH EDITION

header file (formerly string.h) supports these functions. For example, you can use the
strepy () function to copy a string to a character array, and you can use the strcat() function
to append a string to a character array:

strcpy(charri, charr2); // copy charr2 to charri
strcat(charri, charr2); // append contents of charr2 to chari

Listing 4.9 compares techniques used with string objects with techniques used with charac-
ter arrays.

LISTING 4.9 strtype3.cpp

/] strtype3.cpp -- more string class features
#include <iostream>

#include <string> // make string class available
#include <cstring> // C-style string library

int main()

{

using namespace std;
char charr1[20];

char charr2[20] = "jaguar";
string stri;
string str2 = "panther";

/] assignment for string objects and character arrays
str1 = str2; // copy str2 to str2
strcpy(charri, charr2); // copy charr2 to charri

// appending for string objects and character arrays
str1 += " paste"; // add paste to end of stri
strcat(charrt, " juice"); // add juice to end of charri

// finding the length of a string object and a C-style string
int lent = stri.size(); // obtain length of stri
int len2 = strlen(charrt); // obtain length of charri

cout << "The string " << str1 << " contains "
<< leni << " characters.\n";

cout << "The string " << charri << " contains
<< len2 << " characters.\n";

return 0;

}

Here is the output from the program in Listing 4.9:

The string panther paste contains 13 characters.
The string jaguar juice contains 12 characters.

Working with string objects tends to be simpler than using the C string functions. This is espe-
cially true for more complex operations. For example, the library equivalent of

str3 = str1 + str2;

Chapter 4 ¢« COMPOUND TYPES 129

is this:

strcpy(charr3, charri);
strcat(charr3, charr2);

Furthermore, with arrays, there is always the danger of the destination array being too small to
hold the information, as in this example:

char site[10] = "house";
strcat(site, " of pancakes"); // memory problem

The strcat () function would attempt to copy all 12 characters into the site array, thus over-
running adjacent memory. This might cause the program to abort, or the program might con-
tinue running, but with corrupted data. The string class, with its automatic resizing as
necessary, avoids this sort of problem. The C library does provide cousins to strcat() and
strepy (), called strncat() and strncpy (), that work more safely by taking a third argument
to indicate the maximum allowed size of the target array, but using them adds another layer of
complexity in writing programs.

Notice the different syntax used to obtain the number of characters in a string;

int len1 = stri.size(); // obtain length of stri
int len2 = strlen(charrt); // obtain length of charri

The strlen() function is a regular function that takes a C-style string as its argument and that
returns the number of characters in the string. The size() function basically does the same
thing, but the syntax for it is different. Instead of appearing as a function argument, str1 pre-
cedes the function name and is connected to it with a dot. As you saw with the put () method
in Chapter 3, “Dealing with Data,” this syntax indicates that str1 is an object and that size()
is a class method. A method is a function that can be invoked only by an object belonging to
the same class as the method. In this particular case, str1 is a string object, and size() isa
string method. In short, the C functions use a function argument to identify which string to
use, and the C++ string class objects use the object name and the dot operator to indicate
which string to use.

More on string Class I/0

As you've seen, you can use cin with the >> operator to read a string object and cout with
the >> operator to display a string object using the same syntax you use with a C-style string.
But reading a line at a time instead of a word at time uses a different syntax. Listing 4.10
shows this difference.

LISTING 4.10 strtype4.cpp

/] strtype4.cpp -- line input
#include <iostream>

#include <string> // make string class available
#include <cstring> // C-style string library

int main()

{

using namespace std;

130

C++ PRIMER PLUS, FIFTH EDITION

LISTING 4.10 Continued

char charr[20];
string str;

cout << "Length of string in charr before input: "
<< strlen(charr) << endl;

cout << "Length of string in str before input: "
<< str.size() << endl;

cout << "Enter a line of text:\n";

cin.getline(charr, 20); // indicate maximum length

cout << "You entered: " << charr << endl;

cout << "Enter another line of text:\n";

getline(cin, str); // cin now an argument; no length specifier
cout << "You entered: " << str << endl;

cout << "Length of string in charr after input: "
<< strlen(charr) << endl;

cout << "Length of string in str after input: "
<< str.size() << endl;

return 0;

}

Here’s a sample run of the program in Listing 4.10:

Length of string in charr before input: 27
Length of string in str before input: 0
Enter a line of text:

peanut butter

You entered: peanut butter

Enter another line of text:

blueberry jam

You entered: blueberry jam

Length of string in charr after input: 13
Length of string in str after input: 13

Note that the program says the length of the string in the array charr before input is 27,
which is larger than the size of the array! Two things are going on here. The first is that the
contents of an uninitialized array are undefined. The second is that the strlen() function
works by starting at the first element of the array and counting bytes until it reaches a null
character. In this case, the first null character doesn’t appear until several bytes after the end of
the array. Where the first null character appears in uninitialized data is essentially random, so
you very well could get a different numeric result using this program.

Also note that the length of the string in str before input is 0. That's because an uninitialized
string object is automatically set to zero size.

This is the code for reading a line into an array:

cin.getline(charr, 20);

The dot notation indicates that the getline() function is a class method for the istream class.
(Recall that cin is an istream object.) As mentioned earlier, the first argument indicates the
destination array, and the second argument is the array size, which getline() used to avoid
overrunning the array.

Chapter 4 ¢« COMPOUND TYPES

This is the code for reading a line into a string object:
getline(cin,str);

There is no dot notation, which indicates that this getline() is not a class method. So it takes
cin as an argument that tells it where to find the input. Also, there isnt an argument for the
size of the string because the string object automatically resizes to fit the string.

So why is one getline () an istream class method and the other getline() not? The
istream class was part of C++ long before the string class was added. So the istream design
recognizes basic C++ types such as double and int, but it is ignorant of the string type.
Therefore, there are istream class methods for processing double, int, and the other basic
types, but there are no istream class methods for processing string objects.

Because there are no istream class methods for processing string objects, you might wonder
why code like this works:

cin >> str; // read a word into the str string object
It turns out that code like this:

cin >> x; // read a value into a basic C++ type

does (in disguised notation) use a member function of the istream class. But the string class
equivalent uses a friend function (also in disguised notation) of the string class. You'll have to
wait until Chapter 11 to see what a friend function is and how this technique works. In the
meantime, you can use cin and cout with string objects and not worry about the inner
workings.

Now let’s go on to another compound type, the structure.

Introducing Structures

Suppose you want to store information about a basketball player. You might want to store his
or her name, salary, height, weight, scoring average, free-throw percentage, assists, and so on.
You'd like some sort of data form that could hold all this information in one unit. An array
won't do. Although an array can hold several items, each item has to be the same type. That is,
one array can hold 20 ints and another can hold 10 floats, but a single array can't store ints
in some elements and floats in other elements.

The answer to your desire (the one about storing information about a basketball player) is the
C++ structure. A structure is a more versatile data form than an array because a single structure
can hold items of more than one data type. This enables you to unify your data representation
by storing all the related basketball information in a single structure variable. If you want to
keep track of a whole team, you can use an array of structures. The structure type is also a
stepping stone to that bulwark of C++ OOP, the class. Learning a little about structures now
takes you that much closer to the OOP heart of C++.

A structure is a user-definable type, with a structure declaration serving to define the type’s
data properties. After you define the type, you can create variables of that type. Thus, creating
a structure is a two-part process. First, you define a structure description that describes and

132

C++ PRIMER PLUS, FIFTH EDITION

labels the different types of data that can be stored in a structure. Then, you can create struc-
ture variables, or, more generally, structure data objects, that follow the description’s plan.

For example, suppose that Bloataire, Inc., wants to create a type to describe members of its
product line of designer inflatables. In particular, the type should hold the name of the item,
its volume in cubic feet, and its selling price. Here is a structure description that meets those
needs:

struct inflatable // structure declaration

{
char name[20];
float volume;
double price;
b

The keyword struct indicates that the code defines the layout for a structure. The identifier
inflatable is the name, or tag, for this form; this makes inflatable the name for the new
type. Thus, you can now create variables of type inflatable just as you create variables of
type char or int. Next, between braces are the list of data types to be held in the structure.
Each list item is a declaration statement. You can use any of the C++ types here, including
arrays and other structures. This example uses an array of char, which is suitable for storing a
string, a float, and a double. Each individual item in the list is called a structure member, so
the inflatable structure has three members. (See Figure 4.6.)

FIGURE 4.6 the struct the tag becomes the name
Parts of a structure keyword for the new type

description. e

struct inflatable
{

char name[20];
opening and float volume; structure
members

closing braces double price;

)

-~
terminates the structure declaration

After you have the template, you can create variables of that type:

inflatable hat; // hat is a structure variable of type inflatable
inflatable woopie_cushion; // type inflatable variable
inflatable mainframe; // type inflatable variable

If you're familiar with C structures, you'll notice (probably with pleasure) that C++ allows you
to drop the keyword struct when you declare structure variables:

struct inflatable goose; // keyword struct required in C
inflatable vincent; // keyword struct not required in C++

In C++, the structure tag is used just like a fundamental type name. This change emphasizes
that a structure declaration defines a new type. It also removes omitting struct from the list of
curse-inducing errors.

Chapter 4 ¢« COMPOUND TYPES 133

Given that hat is type inflatable, you use the membership operator (.) to access individual
members. For example, hat.volume refers to the volume member of the structure, and
hat.price refers to the price member. Similarly, vincent.price is the price member of the
vincent variable. In short, the member names enable you to access members of a structure
much as indices enable you to access elements of an array. Because the price member is
declared as type double, hat.price and vincent.price are both equivalent to type double
variables and can be used in any manner an ordinary type double variable can be used. In
short, hat is a structure, but hat.price is a double. By the way, the method used to access
class member functions such as cin.getline() has its origins in the method used to access
structure member variables such as vincent.price.

Using a Structure in a Program

Now that we’ve covered some of the main features of structures, its time to put the ideas
together in a structure-using program. Listing 4.11 illustrates these points about a structure.
Also, it shows how to initialize one.

LISTING 4.11 structur.cpp

// structur.cpp -- a simple structure
#include <iostream>
struct inflatable // structure declaration

{
char name[20];
float volume;
double price;

b

int main()

{

using namespace std;
inflatable guest =

{
"Glorious Gloria", // name value
1.88, // volume value
29.99 // price value

}; // guest is a structure variable of type inflatable
// It's initialized to the indicated values
inflatable pal =
{
"Audacious Arthur",
3.12,
32.99
}; // pal is a second variable of type inflatable
// NOTE: some implementations require using
/| static inflatable guest =

cout << "Expand your guest list with " << guest.name;
cout << " and " << pal.name << "!\n"j

// pal.name is the name member of the pal variable
cout << "You can have both for $";

134

C++ PRIMER PLUS, FIFTH EDITION

LISTING 4.11 Continued

ture declarations. {

cout << guest.price + pal.price << "!\n";
return 0;

% Compatibility Note

Just as some older versions of C++ do not yet implement the capability to initialize an ordinary array
defined in a function, they also do not implement the capability to initialize an ordinary structure
defined in a function. Again, the solution is to use the keyword static in the declaration.

Here is the output from the program in Listing 4.11:

Expand your guest list with Glorious Gloria and Audacious Arthur!
You can have both for $62.98!

Program Notes

One important matter related to the program in Listing 4.11 is where to place the structure
declaration. There are two choices for structur.cpp. You could place the declaration inside
the main () function, just after the opening brace. The second choice, and the one made here,
is to place it outside and preceding main (). When a declaration occurs outside any function,
it's called an external declaration. For this program, there is no practical difference between the
two choices. But for programs consisting of two or more functions, the difference can be cru-
cial. The external declaration can be used by all the functions following it, whereas the internal
declaration can be used only by the function in which the declaration is found. Most often,
you want an external structure declaration so that all the functions can use structures of that
type. (See Figure 4.7.)

FIGURE 4.7 #include <iostream>
Local and external struc- external declaration—can be using namespace std;

used in all functions in file struct parts

unsigned long part_number;
float part_cost;
I
void mail ();
int main()
local declaration—can be {
. . . ———————————— struct perks
used only in this function {
int key_number;
char car[12];

. b
type parts variable parts chicken;
type perks variable perks mr_blug;
void mail()
{
type parts variable parts studebaker;

can’t declare a type e
perks variable here }

Chapter 4 ¢« COMPOUND TYPES

Variables, too, can be defined internally or externally, with external variables shared among
functions. (Chapter 9 looks further into that topic.) C++ practices discourage the use of exter-
nal variables but encourage the use of external structure declarations. Also, it often makes
sense to declare symbolic constants externally.

Next, notice the initialization procedure:

inflatable guest =

{
"Glorious Gloria", // name value
1.88, // volume value
29.99 // price value
b

As with arrays, you use a comma-separated list of values enclosed in a pair of braces. The pro-
gram places one value per line, but you can place them all on the same line. Just remember to
separate items with commas:

inflatable duck = {"Daphne", 0.12, 9.98};

You can initialize each member of the structure to the appropriate kind of data. For example,
the name member is a character array, so you can initialize it to a string.

Each structure member is treated as a variable of that type. Thus, pal.price is a double vari-
able and pal.name is an array of char. And when the program uses cout to display pal.name,
it displays the member as a string. By the way, because pal.name is a character array, we can
use subscripts to access individual characters in the array. For example, pal.name[0] is the
character A. But pal[@] is meaningless because pal is a structure, not an array.

Can a Structure Use a string Class Member?

Can you use a string class object instead of a character array for the name member? That is,
can you declare a structure like this:

#include <string>
struct inflatable // structure template

{
std::string name;
float volume;
double price;

b

In principle, the answer is yes. In practice, the answer depends on which compiler you use
because some (including Borland C++ 5.5 and Microsoft Visual C++ prior to version 7.1) do
not support initialization of structures with string class members.

If your compiler does support this usage, make sure that the structure definition has access to
the std namespace. You can do this by moving the using directive so that it is above the struc-
ture definition. Alternatively, as shown previously, you can declare name as having type
std::string.

135

136

C++ PRIMER PLUS, FIFTH EDITION

Other Structure Properties

C++ makes user-defined types as similar as possible to built-in types. For example, you can
pass structures as arguments to a function, and you can have a function use a structure as a
return value. Also, you can use the assignment operator (=) to assign one structure to another
of the same type. Doing so causes each member of one structure to be set to the value of the
corresponding member in the other structure, even if the member is an array. This kind of
assignment is called memberwise assignment. We'll defer passing and returning structures until
we discuss functions in Chapter 7, “Functions: C++%5 Programming Modules,” but we can take
a quick look at structure assignment now. Listing 4.12 provides an example.

LISTING 4.12 assgn_st.cpp

/| assgn_st.cpp -- assigning structures
#include <iostream>
struct inflatable
{
char name[20];
float volume;
double price;

int main()

using namespace std;
inflatable bouquet =
{
"sunflowers",
0.20,
12.49
b
inflatable choice;
cout << "bouquet: " << bouquet.name << " for $";
cout << bouquet.price << endl;

choice = bouquet; // assign one structure to another
cout << "choice: " << choice.name << " for $";

cout << choice.price << endl;

return 0;

}
Here’s the output from the program in Listing 4.12:

bouquet: sunflowers for $12.49
choice: sunflowers for $12.49

As you can see, memberwise assignment is at work, for the members of the choice structure
are assigned the same values stored in the bouquet structure.

You can combine the definition of a structure form with the creation of structure variables. To
do so, you follow the closing brace with the variable name or names:

Chapter 4 ¢« COMPOUND TYPES 137

struct perks

{
int key_number;
char car[12];
} mr_smith, ms_jones; /| two perks variables

You even can initialize a variable you create in this fashion:

struct perks

{
int key_number;
char car[12];
} mr_glitz =
{
7, // value for mr_glitz.key_number member
"Packard" // value for mr_glitz.car member
b

However, keeping the structure definition separate from the variable declarations usually
makes a program easier to read and follow.

Another thing you can do with structures is create a structure with no type name. You do this
by omitting a tag name while simultaneously defining a structure form and a variable:

struct /! no tag

{
int x; /] 2 members
int y;

} position; // a structure variable

This creates one structure variable called position. You can access its members with the mem-
bership operator, as in position.x, but there is no general name for the type. You can't subse-
quently create other variables of the same type. This book doesn’t use that limited form of
structure.

Aside from the fact that a C++ program can use the structure tag as a type name, C structures
have all the features discussed so far for C++ structures. But C++ structures go further. Unlike
C structures, for example, C++ structures can have member functions in addition to member
variables. But these more advanced features most typically are used with classes rather than
structures, so we'll discuss them when we cover classes, beginning with Chapter 10, “Objects
and Classes.”

Arrays of Structures

The inflatable structure contains an array (the name array). It’s also possible to create arrays
whose elements are structures. The technique is exactly the same as for creating arrays of the

fundamental types. For example, to create an array of 100 inflatable structures, you could

do the following:

inflatable gifts[100]; // array of 100 inflatable structures

138

C++ PRIMER PLUS, FIFTH EDITION

This makes gifts an array of inflatables. Hence each element of the array, such as gifts[0]
or gifts[991, is an inflatable object and can be used with the membership operator:

cin >> gifts[0].volume; // use volume member of first struct
cout << gifts[99].price << endl; // display price member of last struct

Keep in mind that gifts itself is an array, not a structure, so constructions such as
gifts.price are not valid.

To initialize an array of structures, you combine the rule for initializing arrays (a brace-
enclosed, comma-separated list of values for each element) with the rule for structures (a
brace-enclosed, comma-separated list of values for each member). Because each element of the
array is a structure, its value is represented by a structure initialization. Thus, you wind up
with a brace-enclosed, comma-separated list of values, each of which itself is a brace-enclosed,
comma-separated list of values:

inflatable guests[2] = // initializing an array of structs

{
{"Bambi", 0.5, 21.99}, // first structure in array

{"Godzilla", 2000, 565.99} // next structure in array
b
As usual, you can format this the way you like. For example, both initializations can be on the
same line, or each separate structure member initialization can get a line of its own.

Listing 4.13 shows a short example that uses an array of structures. Note that because guests
is an array of inflatable, guest[@] is type inflatable, so you can use it with the dot opera-
tor to access a member of the inflatable structure.

LISTING 4.13 arrstruc.cpp

// arrstruc.cpp -- an array of structures
#include <iostream>
struct inflatable

{
char name[20];
float volume;
double price;
bs
int main()
{
using namespace std;
inflatable guests[2] = // initializing an array of structs
{
{"Bambi", 0.5, 21.99}, // first structure in array

{"Godzilla", 2000, 565.99} // next structure in array
¥

cout << "The guests " << guests[@].name << " and " << guests[1].name
<< "\nhave a combined volume of "
<< guests[0].volume + guests[1].volume << " cubic feet.\n";
return 0;

Chapter 4 ¢« COMPOUND TYPES

Here is the output of the program in Listing 4.13:

The guests Bambi and Godzilla
have a combined volume of 2000.5 cubic feet.

Bit Fields in Structures

C++, like C, enables you to specify structure members that occupy a particular number of bits.
This can be handy for creating a data structure that corresponds, say, to a register on some
hardware device. The field type should be an integral or enumeration type (enumerations are
discussed later in this chapter), and a colon followed by a number indicates the actual number
of bits to be used. You can use unnamed fields to provide spacing. Each member is termed a
bit field. Here’s an example:

struct torgle register

{
unsigned int SN : 4; // 4 bits for SN value
unsigned int : 4; // 4 bits unused
bool goodIn : 1; // valid input (1 bit)
bool goodTorgle : 1; // successful torgling
b

You can initialize the fields in the usual manner, and you use standard structure notation to
access bit fields:

torgle_register tr = { 14, true, false };

if (tr.goodIn) // if statement covered in Chapter 6

Bit fields are typically used in low-level programming. Often, using an integral type and the
bitwise operators listed in Appendix E, “Other Operators,” provides an alternative approach.

Unions

A union is a data format that can hold different data types but only one type at a time. That is,
whereas a structure can hold, say, an int and a long and a double, a union can hold an int or
a long or a double. The syntax is like that for a structure, but the meaning is different. For
example, consider the following declaration:

union one4all

{
int int_val;
long long_val;
double double val;
}

You can use a onedall variable to hold an int, a long, or a double, just as long as you do so
at different times:

140

C++ PRIMER PLUS, FIFTH EDITION

oned4all pail;

pail.int_val = 15; /] store an int
cout << pail.int_val;
pail.double_val = 1.38; // store a double, int value is lost

cout << pail.double_val;

Thus, pail can serve as an int variable on one occasion and as a double variable at another
time. The member name identifies the capacity in which the variable is acting. Because a union
holds only one value at a time, it has to have space enough to hold its largest member. Hence,
the size of the union is the size of its largest member.

One use for a union is to save space when a data item can use two or more formats but never
simultaneously. For example, suppose you manage a mixed inventory of widgets, some of
which have an integer ID, and some of which have a string ID. In that case, you could use the
following:

struct widget

{

char brand[20];

int type;

union id // format depends on widget type

{
long id_num; /] type 1 widgets
char id_char[20]; // other widgets

} id_val;

b

widget prize;

if (prize.type == 1) // if-else statement (Chapter 6)
cin >> prize.id_val.id_num; /] use member name to indicate mode

else
cin >> prize.id_val.id_char;

An anonymous union has no name; in essence, its members become variables that share the
same address. Naturally, only one member can be current at a time:

struct widget

{
char brand[20];
int type;
union // anonymous union
{
long id_num; /] type 1 widgets
char id_char[20]; // other widgets
b
b

widget prize;
if (prize.type == 1)

cin >> prize.id_num;
else

cin >> prize.id_char;

Chapter 4 ¢« COMPOUND TYPES 141

Because the union is anonymous, id_num and id_char are treated as two members of prize
that share the same address. The need for an intermediate identifier id_val is eliminated. It is
up to the programmer to keep track of which choice is active.

Enumerations

The C++ enum facility provides an alternative to const for creating symbolic constants. It also
lets you define new types but in a fairly restricted fashion. The syntax for enum resembles
structure syntax. For example, consider the following statement:

enum spectrum {red, orange, yellow, green, blue, violet, indigo, ultraviolet};
This statement does two things:

It makes spectrum the name of a new type; spectrum is termed an enumeration, much
as a struct variable is called a structure.

o It establishes red, orange, yellow, and so on, as symbolic constants for the integer val-
ues 0—7. These constants are called enumerators.

By default, enumerators are assigned integer values starting with O for the first enumerator, 1
for the second enumerator, and so forth. You can override the default by explicitly assigning
integer values. You'll see how later in this chapter.

You can use an enumeration name to declare a variable of the enumeration type:
spectrum band; // band a variable of type spectrum
An enumeration variable has some special properties, which we’ll examine now.

The only valid values that you can assign to an enumeration variable without a type cast are
the enumerator values used in defining the type. Thus, we have the following:

band = blue; // valid, blue is an enumerator
band 2000; // invalid, 2000 not an enumerator

Thus, a spectrum variable is limited to just eight possible values. Some compilers issue a com-
piler error if you attempt to assign an invalid value, whereas others issue a warning. For maxi-
mum portability, you should regard assigning a non-enum value to an enum variable as an error.

Only the assignment operator is defined for enumerations. In particular, arithmetic operations
are not defined:

band = orange; /] valid
++band; // not valid, ++ discussed in Chapter 5

band = orange + red; // not valid, but a little tricky

However, some implementations do not honor this restriction. That can make it possible to
violate the type limits. For example, if band has the value ultraviolet, or 7, then ++band, if
valid, increments band to 8, which is not a valid value for a spectrum type. Again, for maxi-
mum portability, you should adopt the stricter limitations.

142

C++ PRIMER PLUS, FIFTH EDITION

Enumerators are of integer type and can be promoted to type int, but int types are not con-
verted automatically to the enumeration type:

int color = blue; // valid, spectrum type promoted to int
band = 3; // invalid, int not converted to spectrum
color = 3 + red; // valid, red converted to int

Note that in this example, even though 3 corresponds to the enumerator green, assigning 3 to
band is a type error. But assigning green to band is fine because they are both type spectrum.
Again, some implementations do not enforce this restriction. In the expression 3 + red, addi-
tion isn’t defined for enumerators. However, red is converted to type int, and the result is
type int. Because of the conversion from enumeration to int in this situation, you can use
enumerations in arithmetic expressions to combine them with ordinary integers, even though
arithmetic isn’t defined for enumerations themselves.

The earlier example

band = orange + red; // not valid, but a little tricky

fails for a somewhat involved reason. It is true that the + operator is not defined for enumera-
tors. But it is also true that enumerators are converted to integers when used in arithmetic
expressions, so the expression orange + red gets converted to 1 + @, which is a valid expres-
sion. But it is of type int and hence cannot be assigned to the type spectrum variable band.

You can assign an int value to an enum, provided that the value is valid and that you use an
explicit type cast:

band = spectrum(3); /] typecast 3 to type spectrum

What if you try to type cast an inappropriate value? The result is undefined, meaning that the
attempt won't be flagged as an error but that you can’t rely on the value of the result:

band = spectrum(40003); // undefined

(See the section “Value Ranges for Enumerations,” later in this chapter, for a discussion of what
values are and are not appropriate.)

As you can see, the rules governing enumerations are fairly restrictive. In practice, enumera-
tions are used more often as a way of defining related symbolic constants than as a means of
defining new types. For example, you might use an enumeration to define symbolic constants
for a switch statement. (See Chapter 6 for an example.) If you plan to use just the constants
and not create variables of the enumeration type, you can omit an enumeration type name, as
in this example:

enum {red, orange, yellow, green, blue, violet, indigo, ultraviolet};

Setting Enumerator Values

You can set enumerator values explicitly by using the assignment operator:

enum bits{one = 1, two = 2, four = 4, eight = 8};

Chapter 4 ¢« COMPOUND TYPES 143

The assigned values must be integers. You also can define just some of the enumerators
explicitly:
enum bigstep{first, second = 100, third};

In this case, first is 0 by default. Subsequent uninitialized enumerators are larger by one than
their predecessors. So, third would have the value 101.

Finally, you can create more than one enumerator with the same value:

enum {zero, null = @, one, numero_uno = 1};

Here, both zero and null are @, and both one and numero_uno are 1. In earlier versions of
C++, you could assign only int values (or values that promote to int) to enumerators, but
that restriction has been removed so that you can use type long values.

Value Ranges for Enumerations

Originally, the only valid values for an enumeration were those named in the declaration.
However, C++ has expanded the list of valid values that can be assigned to an enumeration
variable through the use of a type cast. Each enumeration has a range, and you can assign any
integer value in the range, even if its not an enumerator value, by using a type cast to an enu-
meration variable. For example, suppose that bits and myflag are defined this way:

enum bits{one = 1, two = 2, four = 4, eight = 8};

bits myflag;

In this case, the following is valid:
myflag = bits(6); // valid, because 6 is in bits range
Here 6 is not one of the enumerations, but it lies in the range the enumerations define.

The range is defined as follows. First, to find the upper limit, you take the largest enumerator
value. Then you find the smallest power of two greater than this largest value and subtract
one; the result is the upper end of the range. (For example, the largest bigstep value, as previ-
ously defined, is 101. The smallest power of two greater than this is 128, so the upper end of
the range is 127.) Next, to find the lower limit, you find the smallest enumerator value. If it is
0 or greater, the lower limit for the range is 0. If the smallest enumerator is negative, you use
the same approach as for finding the upper limit but toss in a minus sign. (For example, if the
smallest enumerator is -6, the next power of two [times a minus sign] is -8, and the lower limit
is -7.)

The idea is that the compiler can choose how much space to use to hold an enumeration. It
might use 1 byte or less for an enumeration with a small range and 4 bytes for an enumeration
with type long values.

144 C++ PRIMER PLUS, FIFTH EDITION

Pointers and the Free Store

The beginning of Chapter 3 mentions three fundamental properties of which a computer pro-
gram must keep track when it stores data. To save the book the wear and tear of your thumb-
ing back to that chapter, here are those properties again:

e Where the information is stored
e What value is kept there
e What kind of information is stored

You've used one strategy for accomplishing these ends: defining a simple variable. The declara-
tion statement provides the type and a symbolic name for the value. It also causes the program
to allocate memory for the value and to keep track of the location internally.

Let’s look at a second strategy now, one that becomes particularly important in developing C++
classes. This strategy is based on pointers, which are variables that store addresses of values
rather than the values themselves. But before discussing pointers, let’s talk about how to
explicitly find addresses for ordinary variables. You just apply the address operator, repre-
sented by &, to a variable to get its location; for example, if home is a variable, &home is its
address. Listing 4.14 demonstrates this operator.

LISTING 4.14 address.cpp

// address.cpp -- using the & operator to find addresses
#include <iostream>
int main()
{
using namespace std;
int donuts = 6;
double cups = 4.5;
cout << "donuts value = " << donuts;
cout << " and donuts address = " << &donuts << endl;
// NOTE: you may need to use unsigned (&donuts)
// and unsigned (&cups)

cout << "cups value = " << cups;
cout << " and cups address = " << &cups << endl;
return 0;

g Compatibility Note

cout is a smart object, but some versions are smarter than others. Thus, some implementations
might not be up to the requirement of the C++ Standard and fail to recognize pointer types. In that
case, you have to type cast the address to a recognizable type, such as unsigned int. The appropri-
ate type cast depends on the memory model. The default DOS memory model uses a 2-byte address,
hence unsigned int is the proper cast. Some DOS memory models, however, use a 4-byte address,
which requires a cast to unsigned long.

Chapter 4 ¢« COMPOUND TYPES

Here is the output from the program in Listing 4.14 on one system:

donuts value = 6 and donuts address = 0x0065fd40
cups value = 4.5 and cups address = 0x0065fd44

The particular implementation of cout shown here uses hexadecimal notation when display-
ing address values because that is the usual notation used to specify a memory address. (Some
implementations use base 10 notation instead.) Our implementation stores donuts at a lower
memory location than cups. The difference between the two addresses is 0x0065fd44 —
0x0065fd40, or 4. This makes sense because donuts is type int, which uses 4 bytes. Different
systems, of course, will give different values for the address. Also, some may store cups first,
then donuts, giving a difference of 8 bytes because cups is double. And some may not even
use adjacent locations.

Using ordinary variables, then, treats the value as a named quantity and the location as a
derived quantity. Now let’s look at the pointer strategy, one that is essential to the C++ pro-
gramming philosophy of memory management. (See the following sidebar, “Pointers and the
C++ Philosophy.”)

Pointers and the C++ Philosophy

Object-oriented programming differs from traditional procedural programming in that OOP empha-
sizes making decisions during runtime instead of during compile time. Runtime means while a pro-
gram is running, and compile time means when the compiler is putting a program together. A
runtime decision is like, when on vacation, choosing what sights to see depending on the weather
and your mood at the moment, whereas a compile-time decision is more like adhering to a preset
schedule, regardless of the conditions.

Runtime decisions provide the flexibility to adjust to current circumstances. For example, consider
allocating memory for an array. The traditional way is to declare an array. To declare an array in C++,
you have to commit yourself to a particular array size. Thus, the array size is set when the program is
compiled; it is a compile-time decision. Perhaps you think an array of 20 elements is sufficient 80%
of the time but that occasionally the program will need to handle 200 elements. To be safe, you use
an array with 200 elements. This results in your program wasting memory most of the time it's used.
OOP tries to make a program more flexible by delaying such decisions until runtime. That way, after
the program is running, you can tell it you need only 20 elements one time or that you need 205
elements another time.

In short, with OOP you would like to make the array size a runtime decision. To make this approach
possible, the language has to allow you to create an array—or the equivalent—while the program
runs. The C++ method, as you soon see, involves using the keyword new to request the correct
amount of memory and using pointers to keep track of where the newly allocated memory is found.

The new strategy for handling stored data switches things around by treating the location as
the named quantity and the value as a derived quantity. A special type of variable—the
pointer—holds the address of a value. Thus, the name of the pointer represents the location.
Applying the * operator, called the indirect value or the dereferencing operator, yields the value
at the location. (Yes, this is the same * symbol used for multiplication; C++ uses the context to

145

146 C++ PRIMER PLUS, FIFTH EDITION

determine whether you mean multiplication or dereferencing.) Suppose, for example, that
manly is a pointer. In that case, manly represents an address, and *manly represents the value
at that address. The combination *manly becomes equivalent to an ordinary type int variable.
Listing 4.15 demonstrates these ideas. It also shows how to declare a pointer.

LISTING 4.15 pointer.cpp

// pointer.cpp -- our first pointer variable
#include <iostream>

int main()
{
using namespace std;
int updates = 6; // declare a variable
int * p_updates; // declare pointer to an int

p_updates = &updates; // assign address of int to pointer

/| express values two ways
cout << "Values: updates = " << updates;
cout << ", *p_updates = " << *p_updates << endl;

/| express address two ways
cout << "Addresses: &updates = " << &updates;
cout << ", p_updates = " << p_updates << endl;

// use pointer to change value
*p_updates = *p_updates + 1;
cout << "Now updates = " << updates << endl;
return 0;

}

Here is the output from the program in Listing 4.15:

Values: updates = 6, *p_updates = 6
Addresses: &updates = 0x0065fd48, p_updates = 0x0065fd48
Now updates = 7

As you can see, the int variable updates and the pointer variable p_updates are just two sides
of the same coin. The updates variable represents the value as primary and uses the & operator
to get the address, whereas the p_updates variable represents the address as primary and uses
the * operator to get the value. (See Figure 4.8.) Because p_updates points to updates,
*p_updates and updates are completely equivalent. You can use *p_updates exactly as you
would use a type int variable. As the program in Listing 4.15 shows, you can even assign val-
ues to *p_updates. Doing so changes the value of the pointed-to value, updates.

FIGURE 4.8

Two sides of a coin. int jumbo = 23;

int * pe = &jumbo;

Chapter 4 ¢« COMPOUND TYPES

These are These are
the same. the same.
jumbo &jumbo

*pe pe
value address
23 0x2ac8

Declaring and Initializing Pointers

Let’s examine the process of declaring pointers. A computer needs to keep track of the type of
value to which a pointer refers. For example, the address of a char typically looks the same as
the address of a double, but char and double use different numbers of bytes and different

internal formats for storing values. Therefore, a pointer declaration must specify what type of

data to which the pointer points.

For example, the preceding example has this declaration:

int * p_updates;

This states that the combination * p_updates is type int. Because you use the * operator by

applying it to a pointer, the p_updates variable itself must be a pointer. We say that p_updates

points to type int. We also say that the type for p_updates is pointer-to-int or, more con-
cisely, int *. To repeat: p_updates is a pointer (an address), and *p_updates is an int and

not a pointer. (See Figure 4.9.)

FIGURE 4.9 Memory address

Variable name

Pointer It I .
ointers store addresses 1000

1002

1004

1006

12 ducks
birddog
points to
ducks
1000 birddog
-

1008

1010

1012

1014

1016

int ducks = 12;

creates ducks variable, stores
the value 12 in the variable

int *birddog = &ducks;

creates birddog variable, stores
the address of ducks in the variable

147

148

C++ PRIMER PLUS, FIFTH EDITION

Incidentally, the use of spaces around the * operator are optional. Traditionally, C program-
mers have used this form:

int *ptr;

This accentuates the idea that the combination *ptr is a type int value. Many C++ program-
mers, on the other hand, use this form:

int* ptr;

This emphasizes the idea that int* is a type, pointer-to-int. Where you put the spaces makes
no difference to the compiler. Be aware, however, that this declaration:

int* p1, p2;

creates one pointer (p1) and one ordinary int (p2). You need an * for each pointer variable
name.

Remember

In C++, the combination int * is a compound type, pointer-to-int.

You use the same syntax to declare pointers to other types:

double * tax_ptr; // tax_ptr points to type double
char * str; /] str points to type char

Because you declare tax_ptr as a pointer-to-double, the compiler knows that *tax_ptris a
type double value. That is, it knows that *tax_ptr represents a number stored in floating-
point format that occupies (on most systems) 8 bytes. A pointer variable is never simply a
pointer. It is always a pointer to a specific type. tax_ptr is type pointer-to-double (or type
double *)and str is type pointer-to-char (or char *). Although both are pointers, they are
pointers of two different types. Like arrays, pointers are based on other types.

Note that whereas tax_ptr and str point to data types of two different sizes, the two variables
tax_ptr and str themselves are typically the same size. That is, the address of a char is the
same size as the address of a double, much as 1016 might be the street address for a depart-
ment store, whereas 1024 could be the street address of a small cottage. The size or value of an
address doesn't really tell you anything about the size or kind of variable or building you find
at that address. Usually, addresses require 2 or 4 bytes, depending on the computer system.
(Some systems might have larger addresses, and a system can use different address sizes for
different types.)

You can use a declaration statement to initialize a pointer. In that case, the pointer, not the
pointed-to value, is initialized. That is, the statements

int higgens = 5;
int * pt = &higgens;

set pt and not *pt to the value &higgens.

Listing 4.16 demonstrates how to initialize a pointer to an address.

Chapter 4 ¢« COMPOUND TYPES 149

LISTING4.16 init_ptr.cpp

// init_ptr.cpp -- initialize a pointer
#include <iostream>
int main()
{
using namespace std;
int higgens = 5;
int * pt = &higgens;

cout << "Value of higgens = " << higgens

<< "; Address of higgens = " << &higgens << endl;
cout << "Value of *pt = " << *pt

<< "; Value of pt = " << pt << endl;
return 0;

}

Here is the output from the program in Listing 4.16:

Value of higgens = 5; Address of higgens = 0012FED4
Value of *pt = 5; Value of pt = 0012FED4

You can see that the program initializes pt, not *pt, to the address of higgens.

Pointer Danger

Danger awaits those who incautiously use pointers. One extremely important point is that
when you create a pointer in C++, the computer allocates memory to hold an address, but it
does not allocate memory to hold the data to which the address points. Creating space for the
data involves a separate step. Omitting that step, as in the following, is an invitation to

disaster:
long * fellow; /| create a pointer-to-long
*fellow = 223323; // place a value in never-never land

Sure, fellow is a pointer. But where does it point? The code failed to assign an address to
fellow. So where is the value 223323 placed? We can't say. Because fellow wasn't initialized,
it could have any value. Whatever that value is, the program interprets it as the address at
which to store 223323. If fellow happens to have the value 1200, then the computer attempts
to place the data at address 1200, even if that happens to be an address in the middle of your
program code. Chances are that wherever fellow points, that is not where you want to put the
number 223323. This kind of error can produce some of the most insidious and hard-to-trace
bugs.

J)

L Caution

Pointer Golden Rule: Always initialize a pointer to a definite and appropriate address before you
apply the dereferencing operator (*) to it.

150

C++ PRIMER PLUS, FIFTH EDITION

Pointers and Numbers

Pointers are not integer types, even though computers typically handle addresses as integers.
Conceptually, pointers are distinct types from integers. Integers are numbers you can add, sub-
tract, divide, and so on. But a pointer describes a location, and it doesn’t make sense, for
example, to multiply two locations by each other. In terms of the operations you can perform
with them, pointers and integers are different from each other. Consequently, you can't simply
assign an integer to a pointer:

int * pt;

pt = 0xB800000OO; // type mismatch

Here, the left side is a pointer to int, so you can assign it an address, but the right side is just
an integer. You might know that 0xB8000000 is the combined segment-offset address of video
memory on your system, but nothing in the statement tells the program that this number is an
address. C prior to C99 lets you make assignments like this. But C++ more stringently enforces
type agreement, and the compiler will give you an error message saying you have a type mis-
match. If you want to use a numeric value as an address, you should use a type cast to convert
the number to the appropriate address type:

int * pt;

pt = (int *) 0xB8000000; // types now match

Now both sides of the assignment statement represent addresses of integers, so the assignment
is valid. Note that just because it is the address of a type int value doesn’t mean that pi itself
is type int. For example, in the large memory model on an IBM PC using DOS, type int is a
2-byte value, whereas the addresses are 4-byte values.

Pointers have some other interesting properties that we’ll discuss as they become relevant.
Meanwhile, let’s look at how pointers can be used to manage runtime allocation of memory
space.

Allocating Memory with new

Now that you have a feel for how pointers work, let’s see how they can implement that impor-
tant OOP technique of allocating memory as a program runs. So far, you've initialized pointers
to the addresses of variables; the variables are named memory allocated during compile time,
and each pointers merely provides an alias for memory you could access directly by name any-
way. The true worth of pointers comes into play when you allocate unnamed memory during
runtime to hold values. In this case, pointers become the only access to that memory. In C,
you can allocate memory with the library function malloc (). You can still do so in C++, but
C++ also has a better way: the new operator.

Let’s try out this new technique by creating unnamed runtime storage for a type int value and
accessing the value with a pointer. The key is the C++ new operator. You tell new for what data
type you want memory; new finds a block of the correct size and returns the address of the
block. You assign this address to a pointer, and you're in business. Heres an example of the
technique:

int * pn = new int;

Chapter 4 « COMPOUND TYPES 151

The new int part tells the program you want some new storage suitable for holding an int.
The new operator uses the type to figure out how many bytes are needed. Then it finds the
memory and returns the address. Next, you assign the address to pn, which is declared to be of
type pointer-to-int. Now pn is the address and *pn is the value stored there. Compare this
with assigning the address of a variable to a pointer:

int higgens;
int * pt = &higgens;

In both cases (pn and pt), you assign the address of an int to a pointer. In the second case,
you can also access the int by name: higgens. In the first case, your only access is via the
pointer. That raises a question: Because the memory to which pn points lacks a name, what do
you call it? We say that pn points to a data object. This is not “object” in the sense of “object-
oriented programming”; it’s just “object” in the sense of “thing.” The term “data object” is more
general than the term “variable” because it means any block of memory allocated for a data
item. Thus, a variable is also a data object, but the memory to which pn points is not a vari-
able. The pointer method for handling data objects may seem more awkward at first, but it
offers greater control over how your program manages memory.

The general form for obtaining and assigning memory for a single data object, which can be a
structure as well as a fundamental type, is this:

typeName pointer_name = new typeName;

You use the data type twice: once to specify the kind of memory requested and once to declare
a suitable pointer. Of course, if you've already declared a pointer of the correct type, you can
use it rather than declare a new one. Listing 4.17 illustrates using new with two different types.

LISTING 4.17 use_new.cpp

// use_new.cpp -- using the new operator

#include <iostream>

int main()

{
using namespace std;
int * pt = new int; // allocate space for an int
*pt = 1001; // store a value there

cout << "int ";
cout << "value = " << *pt << ": location = " << pt << endl;

double * pd = new double; // allocate space for a double

*pd = 10000001.0; // store a double there

cout << "double ";

cout << "value = " << *pd << ": location = " << pd << endl;
cout << "size of pt = " << sizeof(pt);

cout << ": size of *pt = " << sizeof(*pt) << endl;

cout << "size of pd = " << sizeof pd;

cout << ": size of *pd = " << sizeof(*pd) << endl;

return 0;

152

C++ PRIMER PLUS, FIFTH EDITION

Here is the output from the program in Listing 4.17:

int value = 1001: location = 0x004301a8
double value = 1e+07: location = 0x004301d8
size of pt = 4: size of *pt = 4

size of pd = 4: size of *pd = 8

Of course, the exact values for the memory locations differ from system to system.

Program Notes

The program in Listing 4.17 uses new to allocate memory for the type int and type double
data objects. This occurs while the program is running. The pointers pt and pd point to these
two data objects. Without them, you cannot access those memory locations. With them, you
can use *pt and *pd just as you would use variables. You assign values to *pt and *pd to
assign values to the new data objects. Similarly, you print *pt and *pd to display those values.

The program in Listing 4.17 also demonstrates one of the reasons you have to declare the type
a pointer points to. An address in itself reveals only the beginning address of the object stored,
not its type or the number of bytes used. Look at the addresses of the two values. They are just
numbers with no type or size information. Also, note that the size of a pointer-to-int is the
same as the size of a pointer-to-double. Both are just addresses. But because use_new.cpp
declares the pointer types, the program knows that *pd is a double value of 8 bytes, whereas
*pt is an int value of 4 bytes. When use_new. cpp prints the value of *pd, cout can tell how
many bytes to read and how to interpret them.

Out of Memory?

It's possible that a computer might not have sufficient memory available to satisfy a new request.
When that is the case, new returns the value @. In C++, a pointer with the value @ is called the null
pointer. C++ guarantees that the null pointer never points to valid data, so it is often used to indi-
cate failure for operators or functions that otherwise return usable pointers. After you learn about if
statements in Chapter 6, you can check to see if new returns the null pointer and thus protects your
program from attempting to exceed its bounds. In addition to returning the null pointer upon failure
to allocate memory, new might throw a bad_alloc exception. Chapter 15, “Friends, Exceptions, and
More,” discusses the exception mechanism.

Freeing Memory with delete

Using new to request memory when you need it is just the more glamorous half of the C++
memory-management package. The other half is the delete operator, which enables you to
return memory to the memory pool when you are finished with it. That is an important step
toward making the most effective use of memory. Memory that you return, or free, can then be
reused by other parts of the program. You use delete by following it with a pointer to a block
of memory originally allocated with new:

int * ps = new int; // allocate memory with new
A // use the memory
delete ps; // free memory with delete when done

Chapter 4 ¢« COMPOUND TYPES 153

This removes the memory to which ps points; it doesn’t remove the pointer ps itself. You can
reuse ps, for example, to point to another new allocation. You should always balance a use of
new with a use of delete; otherwise, you can wind up with a memory leak—that is, memory
that has been allocated but can no longer be used. If a memory leak grows too large, it can
bring a program seeking more memory to a halt.

You should not attempt to free a block of memory that you have previously freed. The C++
Standard says the result of such an attempt is undefined, meaning that the consequences could
be anything. Also, you cannot use delete to free memory created by declaring ordinary vari-

ables:

int * ps = new int; /1 ok

delete ps; /] ok

delete ps; // not ok now

int jugs = 5; /] ok

int * pi = &jugs; /] ok

delete pi; // not allowed, memory not allocated by new
[»

Caution

You should use delete only to free memory allocated with new. However, it is safe to apply delete
to a null pointer.

Note that the critical requirement for using delete is to use it with memory allocated by new.
This doesn’t mean you have to use the same pointer you used with new; instead, you have to
use the same address:

int * ps = new int; // allocate memory
int * pq = ps; // set second pointer to same block
delete pq; // delete with second pointer

Ordinarily, you won't create two pointers to the same block of memory because that raises the
possibility that you will mistakenly try to delete the same block twice. But, as you'll soon see,
using a second pointer does make sense when you work with a function that returns a pointer.

Using new to Create Dynamic Arrays

If all a program needs is a single value, you might as well declare a simple variable, for that is
simpler, if less impressive, than using new and a pointer to manage a single small data object.
More typically, you use new with larger chunks of data, such as arrays, strings, and structures.
This is where new is useful. Suppose, for example, you're writing a program that might or
might not need an array, depending on information given to the program while it is running. If
you create an array by declaring it, the space is allocated when the program is compiled.
Whether or not the program finally uses the array, the array is there, using up memory.
Allocating the array during compile time is called static binding, meaning that the array is built
in to the program at compile time. But with new, you can create an array during runtime if you
need it and skip creating the array if you don’t need it. Or you can select an array size after the
program is running. This is called dynamic binding, meaning that the array is created while the

154

C++ PRIMER PLUS, FIFTH EDITION

program is running. Such an array is called a dynamic array. With static binding, you must
specify the array size when you write the program. With dynamic binding, the program can
decide on an array size while the program runs.

For now, we'll look at two basic matters concerning dynamic arrays: how to use C++5 new
operator to create an array and how to use a pointer to access array elements.

Creating a Dynamic Array with new

It easy to create a dynamic array in C++; you tell new the type of array element and number of
elements you want. The syntax requires that you follow the type name with the number of ele-
ments, in brackets. For example, if you need an array of 10 ints, you use this:

int * psome = new int [10]; // get a block of 10 ints

The new operator returns the address of the first element of the block. In this example, that
value is assigned to the pointer psome. You should balance the call to new with a call to delete
when the program finishes using that block of memory.

When you use new to create an array, you should use an alternative form of delete which indi-
cates that you are freeing an array:

delete [] psome; // free a dynamic array

The presence of the brackets tells the program that it should free the whole array, not just the
element pointed to by the pointer. Note that the brackets are between delete and the pointer.
If you use new without brackets, you should use delete without brackets. If you use new with
brackets, you should use delete with brackets. Earlier versions of C++ might not recognize
the bracket notation. For the ANSI/ISO Standard, however, the effect of mismatching new and
delete forms is undefined, meaning that you can't rely on some particular behavior. Here’s an
example:

int * pt = new int;

short * ps = new short [500];

delete [] pt; // effect is undefined, don't do it
delete ps; // effect is undefined, don't do it

In short, you should observe these rules when you use new and delete:
e Don't use delete to free memory that new didn't allocate.
e Don't use delete to free the same block of memory twice in succession.
e Use delete [] if you used new [1] to allocate an array.
» Use delete (no brackets) if you used new to allocate a single entity.
o Its safe to apply delete to the null pointer (nothing happens).

Now lets return to the dynamic array. Note that psome is a pointer to a single int, the first ele-
ment of the block. It’s your responsibility to keep track of how many elements are in the block.
That is, because the compiler doesn’t keep track of the fact that psome points to the first of 10
integers, you have to write your program so that it keeps track of the number of elements.

Chapter 4 ¢« COMPOUND TYPES 155

Actually, the program does keep track of the amount of memory allocated so that it can be cor-
rectly freed at a later time when you use the delete [] operator. But that information isn’t
publicly available; you can't use the sizeof operator, for example, to find the number of bytes
in a dynamically allocated array.

The general form for allocating and assigning memory for an array is this:

type_name pointer_name = new type_name [num_elements];

Invoking the new operator secures a block of memory large enough to hold num_elements ele-
ments of type type_name, with pointer_name pointing to the first element. As you're about to
see, you can use pointer_name in many of the same ways you can use an array name.

Using a Dynamic Array

After you create a dynamic array, how do you use it? First, think about the problem conceptu-
ally. The statement

int * psome = new int [10]; // get a block of 10 ints

creates a pointer psome that points to the first element of a block of 10 int values. Think of it
as a finger pointing to that element. Suppose an int occupies 4 bytes. Then, by moving your
finger 4 bytes in the correct direction, you can point to the second element. Altogether, there
are 10 elements, which is the range over which you can move your finger. Thus, the new state-
ment supplies you with all the information you need to identify every element in the block.

Now think about the problem practically. How do you access one of these elements? The first
element is no problem. Because psome points to the first element of the array, *psome is the
value of the first element. That leaves 9 more elements to access. The simplest way to access
the elements may surprise you if you haven't worked with C: Just use the pointer as if it were
an array name. That is, you can use psome[0] instead of *psome for the first element,
psome[1] for the second element, and so on. It turns out to be very simple to use a pointer to
access a dynamic array, even if it may not immediately be obvious why the method works. The
reason you can do this is that C and C++ handle arrays internally by using pointers anyway.
This near equivalence of arrays and pointers is one of the beauties of C and C++. You'll learn
more about this equivalence in a moment. First, Listing 4.18 shows how you can use new to
create a dynamic array and then use array notation to access the elements. It also points out a
fundamental difference between a pointer and a true array name.

LISTING 4.18 arraynew.cpp.

// arraynew.cpp -- using the new operator for arrays

#include <iostream>

int main()

{
using namespace std;
double * p3 = new double [3]; // space for 3 doubles
p3[0] // treat p3 like an array name
p3[1] =
p3[2]

1
(SIS ST

.2;
.5;
.8;

156

C++ PRIMER PLUS, FIFTH EDITION

LISTING 4.18 Continued

cout << "p3[1] is " << p3[1] << ".\n";

p3 = p3 + 1; // increment the pointer
cout << "Now p3[0Q] is " << p3[0] << " and ";

cout << "p3[1] is " << p3[1] << ".\n";

p3 = p3 - 1; /1 point back to beginning
delete [] p3; // free the memory
return 0;

}
Here is the output from the program in Listing 4.18:

p3[1] is 0.5.
Now p3[0@] is 0.5 and p3[1] is 0.8.

As you can see, arraynew. cpp uses the pointer p3 as if it were the name of an array, with
p3[0] as the first element, and so on. The fundamental difference between an array name and
a pointer appears in the following line:

p3 = p3 + 1; // okay for pointers, wrong for array names

You can't change the value of an array name. But a pointer is a variable, hence you can change
its value. Note the effect of adding 1 to p3. The expression p3[@] now refers to the former sec-
ond element of the array. Thus, adding 1 to p3 causes it to point to the second element instead
of the first. Subtracting one takes the pointer back to its original value so that the program can
provide delete [] with the correct address.

The actual addresses of consecutive ints typically differ by 2 or 4 bytes, so the fact that adding
1 to p3 gives the address of the next element suggests that there is something special about
pointer arithmetic. There is.

Pointers, Arrays, and Pointer Arithmetic

The near equivalence of pointers and array names stems from pointer arithmetic and how C++
handles arrays internally. First, lets check out the arithmetic. Adding one to an integer variable
increases its value by one, but adding one to a pointer variable increases its value by the num-
ber of bytes of the type to which it points. Adding one to a pointer to double adds 8 to the
numeric value on systems with 8-byte double, whereas adding one to a pointer-to-short adds
two to the pointer value if short is 2 bytes. Listing 4.19 demonstrates this amazing point. It
also shows a second important point: C++ interprets the array name as an address.

LISTING 4.19 addpntrs.cpp

// addpntrs.cpp -- pointer addition
#include <iostream>
int main()

{

Chapter 4 ¢« COMPOUND TYPES 157

LISTING 4.19 Continued

using namespace std;
double wages[3] = {10000.0, 20000.0, 30000.0};
short stacks[3] {3, 2, 1};

// Here are two ways to get the address of an array
double * pw = wages; // name of an array = address
short * ps = &stacks[0]; // or use address operator

// with array element

cout << "pw = " << pw << ", *pw = " << *pw << endl;
pw = pw + 1;

cout << "add 1 to the pw pointer:\n";

cout << "pw = " << pw << ", Fpw = " << *pw << "\n\n";
cout << "ps = " << ps << ", *ps = " << *ps << endl;
ps = ps + 1;

cout << "add 1 to the ps pointer:\n";

cout << "ps = " << ps << ", *ps = " << *ps << "\n\n";

cout << "access two elements with array notation\n";

cout << "stacks[@] = " << stacks[0]

<< ", stacks[1] = " << stacks[1] << endl;
cout << "access two elements with pointer notation\n";
cout << "*stacks = " << *stacks

<< ", *(stacks + 1) = " << *(stacks + 1) << endl;
cout << sizeof(wages) << " = size of wages array\n";
cout << sizeof(pw) << " = size of pw pointer\n";
return 0;

}
Here is the output from the program in Listing 4.19:

pw = Q012FEBC, *pw = 10000
add 1 to the pw pointer:
pw = 0012FEC4, *pw = 20000

ps = 0012FEAC, *ps = 3
add 1 to the ps pointer:
ps = O012FEAE, *ps = 2

access two elements with array notation
stacks[@] = 3, stacks[1] = 2

access two elements with pointer notation
*stacks = 3, *(stacks + 1) = 2

24 = size of wages array

4 = size of pw pointer

Program Notes

In most contexts, C++ interprets the name of an array as the address of its first element. Thus,
the statement

double * pw = wages;

158

C++ PRIMER PLUS, FIFTH EDITION

makes pw a pointer to type double and then initializes pw to wages, which is the address of the
first element of the wages array. For wages, as with any array, we have the following equality:

wages = &wages[0@] = address of first element of array

Just to show that this is no jive, the program explicitly uses the address operator in the expres-
sion &stacks[0@] to initialize the ps pointer to the first element of the stacks array.

Next, the program inspects the values of pw and *pw. The first is an address and the second is
the value at that address. Because pw points to the first element, the value displayed for *pw is
that of the first element, 10000. Then, the program adds one to pw. As promised, this adds
eight (fd24 + 8 = fd2c in hexadecimal) to the numeric address value because double on this
system is 8 bytes. This makes pw equal to the address of the second element. Thus, *pw is now
20000, the value of the second element. (See Figure 4.10.) (The address values in the figure are
adjusted to make the figure clearer.)

FIGURE 4.10 double wages[3] = {10000.0, 20000.0, 30000.0};

short stacks[3] = {3, 2, 1};

Pointer addition. double * pw = wages;

short * ps = &stacks[0];

100000 [200000 300000 [a2]4]
Address: 100 108 116 124126 128
pw (pw + 1) ps (ps + 1)
pw points to type double, so ps points to type short, so
adding 1 to pw changes its adding 1 to ps changes its
value by 8 bytes. value by 2 bytes.

After this, the program goes through similar steps for ps. This time, because ps points to type
short and because short is 2 bytes, adding one to the pointer increases its value by two.
Again, the result is to make the pointer point to the next element of the array.

Remember

Adding one to a pointer variable increases its value by the number of bytes of the type to which it
points.

Now consider the array expression stacks[1]. The C++ compiler treats this expression
exactly as if you wrote it as * (stacks + 1). The second expression means calculate the
address of the second element of the array and then find the value stored there. The end result
is precisely what stacks[1] means. (Operator precedence requires that you use the parenthe-
ses. Without them, one would be added to *stacks instead of to stacks.)

Chapter 4 ¢« COMPOUND TYPES 159

The program output demonstrates that * (stacks + 1) and stacks[1] are the same. Similarly,
*(stacks + 2) is the same as stacks[2]. In general, wherever you use array notation, C++
makes the following conversion:

arrayname[i] becomes *(arrayname + 1)

And if you use a pointer instead of an array name, C++ makes the same conversion:
pointername[i] becomes *(pointername + 1)

Thus, in many respects you can use pointer names and array names in the same way. You can
use the array brackets notation with either. You can apply the dereferencing operator (*) to

either. In most expressions, each represents an address. One difference is that you can change
the value of a pointer, whereas an array name is a constant:

pointername = pointername + 1; // valid
arrayname = arrayname + 1; // not allowed

The second difference is that applying the sizeof operator to an array name yields the size of
the array, but applying sizeof to a pointer yields the size of the pointer, even if the pointer
points to the array. For example, in Listing 4.19, both pw and wages refer to the same array.
But applying the sizeof operator to them produces the following results:

24 = size of wages array ~ displaying sizeof wages
4 = size of pw pointer ~ displaying sizeof pw

This is one case in which C++ doesn’t interpret the array name as an address.

In short, using new to create an array and using a pointer to access the different elements is a
simple matter. You just treat the pointer as an array name. Understanding why this works,
however, is an interesting challenge. If you actually want to understand arrays and pointers,
you should review their mutual relationships carefully.

Summarizing Pointer Points

You've been exposed to quite a bit of pointer knowledge lately, so let’s summarize whats been
revealed about pointers and arrays to date.

Declaring Pointers
To declare a pointer to a particular type, use this form:

typeName * pointerName;

Here are some examples:

double * pn; // pn can point to a double value
char * pc; // pc can point to a char value

Here pn and pc are pointers and double * and char * are the C++ notations for the types
pointer-to-double and pointer-to-char.

160

C++ PRIMER PLUS, FIFTH EDITION

Assigning Values to Pointers

You should assign a memory address to a pointer. You can apply the & operator to a variable
name to get an address of named memory, and the new operator returns the address of
unnamed memory.

Here are some examples:

double * pn; // pn can point to a double value

double * pa; // so can pa

char * pc; // pc can point to a char value

double bubble = 3.2;

pn = &bubble; // assign address of bubble to pn

pc = new char; // assign address of newly allocated char memory to pc
pa = new double[30]; // assign address of array of 30 double to pa

Dereferencing Pointers

Dereferencing a pointer means referring to the pointed-to value. You apply the dereferencing,
or indirect value, operator (*) to a pointer to dereference it. Thus, if pn is a pointer to bubble,
as in the preceding example, then *pn is the pointed-to value, or 3.2, in this case.

Here are some examples:

cout << *pn; // print the value of bubble
*pc = 'S'; // place 'S' into the memory location whose address is pc

Array notation is a second way to dereference a pointer; for instance, pn[0] is the same as *pn.
You should never dereference a pointer that has not been initialized to a proper address.

Distinguishing Between a Pointer and the Pointed-to Value

Remember, if pt is a pointer-to-int, *pt is not a pointer-to-int; instead, *pt is the complete
equivalent to a type int variable. It is pt that is the pointer.

Here are some examples:

int * pt = new int; // assigns an address to the pointer pt
*pt = 5; // stores the value 5 at that address

Array Names

In most contexts, C++ treats the name of an array as equivalent to the address of the first ele-
ment of an array.

Here is an example:

int tacos[10]; // now tacos is the same as &tacos[0]

One exception is when you use the name of an array with the sizeof operator. In that case,
sizeof returns the size of the entire array, in bytes.

Chapter 4 ¢« COMPOUND TYPES 161

Pointer Arithmetic

C++ allows you to add an integer to a pointer. The result of adding one equals the original
address value plus a value equal to the number of bytes in the pointed-to object. You can also
subtract an integer from a pointer to take the difference between two pointers. The last opera-
tion, which yields an integer, is meaningful only if the two pointers point into the same array
(pointing to one position past the end is allowed, too); it then yields the separation between
the two elements.

Here are some examples:

int tacos[10] = {5,2,8,4,1,2,2,4,6,8};

int * pt = tacos; /| suppose pf and tacos are the address 3000
pt = pt + 1; // now pt is 3004 if a int is 4 bytes

int *pe = &tacos[9]; // pe is 3036 if an int is 4 bytes

pe = pe - 1; // now pe is 3032, the address of tacos[8]
int diff = pe - pt; // diff is 7, the separation between

// tacos[8] and tacos[1]

Dynamic Binding and Static Binding for Arrays

You can use an array declaration to create an array with static binding—that is, an array whose
size 1s set

int tacos[10]; // static binding, size fixed at compile time
You use the new [] operator to create an array with dynamic binding (a dynamic array)—that

is, an array that is allocated and whose size can be set during runtime. You free the memory
with delete [] when you are done:

int size;

cin >> size;

int * pz = new int [size]; // dynamic binding, size set at run time
delete [] pz; // free memory when finished

Array Notation and Pointer Notation
Using bracket array notation is equivalent to dereferencing a pointer:

tacos[0@] means *tacos means the value at address tacos
tacos[3] means *(tacos + 3) means the value at address tacos + 3

This is true for both array names and pointer variables, so you can use either pointer notation
or array notation with pointers and array names.

Here are some examples:

int * pt = new int [10]; // pt points to block of 10 ints

*pt = 5; // set element number @ to 5
pt[0] = 6; /| reset element number @ to 6
pt[9] = 44; // set tenth element (element number 9) to 44

int coats[10];
*(coats + 4) = 12; /| set coats[4] to 12

162

C++ PRIMER PLUS, FIFTH EDITION

Pointers and Strings

The special relationship between arrays and pointers extends to C-style strings. Consider the
following code:

char flower[10] = "rose";
cout << flower << "s are red\n";

The name of an array is the address of its first element, so flower in the cout statement is the
address of the char element containing the character r. The cout object assumes that the
address of a char is the address of a string, so it prints the character at that address and then
continues printing characters until it runs into the null character (\@). In short, if you give
cout the address of a character, it prints everything from that character to the first null charac-
ter that follows it.

The crucial element here is not that flower is an array name but that flower acts as the
address of a char. This implies that you can use a pointer-to-char variable as an argument to
cout, also, because it, too, is the address of a char. Of course, that pointer should point to the
beginning of a string. We'll check that out in a moment.

But what about the final part of the preceding cout statement? If flower is actually the address
of the first character of a string, what is the expression "s are red\n"? To be consistent with
cout’s handling of string output, this quoted string should also be an address. And it is, for in
C++ a quoted string, like an array name, serves as the address of its first element. The preced-
ing code doesn't really send a whole string to cout; it just sends the string address. This means
strings in an array, quoted string constants, and strings described by pointers are all handled
equivalently. Each is really passed along as an address. That’s certainly less work than passing
each and every character in a string.

Remember

With cout and with most C++ expressions, the name of an array of char, a pointer-to-char, and a
quoted string constant are all interpreted as the address of the first character of a string.

Listing 4.20 illustrates the use of the different forms of strings. It uses two functions from the
string library. The strlen() function, which you've used before, returns the length of a string.
The strcpy () function copies a string from one location to another. Both have function proto-
types in the cstring header file (or string.h, on less up-to-date implementations). The pro-
gram also uses comments to showcase some pointer misuses that you should try to avoid.

LISTING 4.20 ptrstr.cpp

// ptrstr.cpp -- using pointers to strings

#include <iostream>

#include <cstring> // declare strlen(), strcpy()
int main()

{

Chapter 4 ¢« COMPOUND TYPES

LISTING 4.20 Continued

using namespace std;

char animal[20] = "bear"; // animal holds bear

const char * bird = "wren"; // bird holds address of string

char * ps; // uninitialized

cout << animal << " and "; // display bear

cout << bird << "\n"; // display wren

/] cout << ps << "\n"; //may display garbage, may cause a crash

cout << "Enter a kind of animal: ";
cin >> animal; // ok if input < 20 chars
// cin >> ps; Too horrible a blunder to try; ps doesn't
/1 point to allocated space

ps = animal; // set ps to point to string
cout << ps << "s!\n"; // ok, same as using animal
cout << "Before using strcpy():\n";

cout << animal << " at " << (int *) animal << endl;

cout << ps << " at " << (int *) ps << endl;

ps = new char[strlen(animal) + 1]; // get new storage
strcpy(ps, animal); // copy string to new storage
cout << "After using strcpy():\n";

cout << animal << " at " << (int *) animal << endl;

cout << ps << " at " << (int *) ps << endl;

delete [] ps;

return 0;

g Compatibility Note

If your system doesn’t have the cstring header file, use the older string.h version.

Here is a sample run of the program in Listing 4.20:

bear and wren

Enter a kind of animal: fox
foxs!

Before using strcpy():

fox at 0x0065fd30

fox at 0x0065fd30

After using strcpy():

fox at 0x0065fd30

fox at 0x004301c8

Program Notes

The program in Listing 4.20 creates one char array (animal) and two pointers-to-char vari-
ables (bird and ps). The program begins by initializing the animal array to the "bear" string,

163

164

C++ PRIMER PLUS, FIFTH EDITION

just as you've initialized arrays before. Then, the program does something new. It initializes a
pointer-to-char to a string:

const char * bird = "wren"; // bird holds address of string

Remember, "wren" actually represents the address of the string, so this statement assigns the
address of "wren" to the bird pointer. (Typically, a compiler sets aside an area in memory to
hold all the quoted strings used in the program source code, associating each stored string
with its address.) This means you can use the pointer bird just as you would use the string
"wren", as in this example:

cout << "A concerned " << bird << " speaks\n";

String literals are constants, which is why the code uses the const keyword in the declaration.
Using const in this fashion means you can use bird to access the string but not to change it.
Chapter 7 takes up the topic of const pointers in greater detail. Finally, the pointer ps remains
uninitialized, so it doesn’t point to any string. (As you know, that is usually a bad idea, and
this example is no exception.)

Next, the program illustrates that you can use the array name animal and the pointer bird
equivalently with cout. Both, after all, are the addresses of strings, and cout displays the two
strings ("bear" and "wren") stored at those addresses. If you activate the code that makes the
error of attempting to display ps, you might get a blank line, you might get garbage displayed,
and you might get a program crash. Creating an uninitialized pointer is a bit like distributing a
blank signed check: You lack control over how it will be used.

For input, the situation is a bit different. It’s safe to use the array animal for input as long as
the input is short enough to fit into the array. It would not be proper to use bird for input,
however:

* Some compilers treat string literals as read-only constants, leading to a runtime error if
you try to write new data over them. That string literals be constants is the mandated
behavior in C++, but not all compilers have made that change from older behavior yet.

* Some compilers use just one copy of a string literal to represent all occurrences of that
literal in a program.

Let’s amplify the second point. C++ doesn’t guarantee that string literals are stored uniquely.
That is, if you use a string literal "wren" several times in a program, the compiler might store
several copies of the string or just one copy. If it does the latter, then setting bird to point to
one "wren" makes it point to the only copy of that string. Reading a value into one string
could affect what you thought was an independent string elsewhere. In any case, because the
bird pointer is declared as const, the compiler prevents any attempt to change the contents of
the location pointed to by bird.

Worse yet is trying to read information into the location to which ps points. Because ps is not
initialized, you don’t know where the information will wind up. It might even overwrite infor-
mation that is already in memory. Fortunately, its easy to avoid these problems: You just use a
sufficiently large char array to receive input, and don’t use string constants to receive input or

Chapter 4 ¢« COMPOUND TYPES 165

uninitialized pointers to receive input. (Or you might sidestep all these issues and use
std::string objects instead of arrays.)

Caution

When you read a string into a program, you should always use the address of previously allocated
memory. This address can be in the form of an array name or of a pointer that has been initialized
using new.

Next, notice what the following code accomplishes:

ps = animal; // set ps to point to string

cout << animal << " at " << (int *) animal << endl;
cout << ps << " at " << (int *) ps << endl;

It produces the following output:

fox at 0x0065fd30
fox at 0x0065fd30

Normally, if you give cout a pointer, it prints an address. But if the pointer is type char *,
cout displays the pointed-to string. If you want to see the address of the string, you have to
type cast the pointer to another pointer type, such as int *, which this code does. So ps dis-
plays as the string "fox", but (int *) ps displays as the address where the string is found.
Note that assigning animal to ps does not copy the string; it copies the address. This results in
two pointers (animal and ps) to the same memory location and string.

To get a copy of a string, you need to do more. First, you need to allocate memory to hold the
string. You can do this by declaring a second array or by using new. The second approach
enables you to custom fit the storage to the string:

ps = new char[strlen(animal) + 1]; // get new storage

The string "fox" doesn’t completely fill the animal array, so this approach wastes space. This
bit of code uses strlen() to find the length of the string; it adds one to get the length, includ-
ing the null character. Then the program uses new to allocate just enough space to hold the
string.

Next, you need a way to copy a string from the animal array to the newly allocated space. It
doesn't work to assign animal to ps because that just changes the address stored in ps and
thus loses the only way the program had to access the newly allocated memory. Instead, you
need to use the strepy () library function:

strcpy(ps, animal); /| copy string to new storage

The strcpy () function takes two arguments. The first is the destination address, and the sec-

ond is the address of the string to be copied. It’s up to you to make certain that the destination
really is allocated and has sufficient space to hold the copy. That's accomplished here by using
strlen() to find the correct size and using new to get free memory.

166

C++ PRIMER PLUS, FIFTH EDITION

Note that by using strcpy () and new, you get two separate copies of "fox":

fox at 0x0065td30
fox at 0x004301c8

Also note that new located the new storage at a memory location quite distant from that of the
array animal.

Often you encounter the need to place a string into an array. You use the = operator when you
initialize an array; otherwise, you use strcpy () or strncpy (). You've seen the strepy () func-
tion; it works like this:

char food[20] = "carrots"; // initialization
strcpy(food, "flan"); /] otherwise

Note that something like this:

strcpy(food, "a picnic basket filled with many goodies");

can cause problems because the food array is smaller than the string. In this case, the function
copies the rest of the string into the memory bytes immediately following the array, which can
overwrite other memory the program is using. To avoid that problem, you should use
strncpy () instead. It takes a third argument: the maximum number of characters to be
copied. Be aware, however, that if this function runs out of space before it reaches the end of
the string, it doesn’t add the null character. Thus, you should use the function like this:

strncpy(food, "a picnic basket filled with many goodies", 19);
food[19] = "\0';

This copies up to 19 characters into the array and then sets the last element to the null charac-
ter. If the string is shorter than 19 characters, strncpy () adds a null character earlier to mark
the true end of the string.

Remember

Use strepy () or strncpy (), not the assignment operator, to assign a string to an array.

Now that you've seen some aspects of using C-style strings and the cstring library, you can
appreciate the comparative simplicity of using the C++ string type. You (normally) don't have
to worry about a string overflowing an array, and you can use the assignment operator instead
of strepy () or strncpy().

Using new to Create Dynamic Structures

You've seen how it can be advantageous to create arrays during runtime rather than at compile
time. The same holds true for structures. You need to allocate space for only as many struc-
tures as a program needs during a particular run. Again, the new operator is the tool to use.
With it, you can create dynamic structures. Again, dynamic means the memory is allocated
during runtime, not at compile time. Incidentally, because classes are much like structures,
you are able to use the techniques you'll learn in this section for structures with classes, too.

Chapter 4 ¢« COMPOUND TYPES

Using new with structures has two parts: creating the structure and accessing its members. To
create a structure, you use the structure type with new. For example, to create an unnamed
structure of the inflatable type and assign its address to a suitable pointer, you can use the
following:

inflatable * ps = new inflatable;

This assigns to ps the address of a chunk of free memory large enough to hold a structure of
the inflatable type. Note that the syntax is exactly the same as it is for C++% built-in types.

The tricky part is accessing members. When you create a dynamic structure, you can't use the
dot membership operator with the structure name because the structure has no name. All you
have is its address. C++ provides an operator just for this situation: the arrow membership
operator (->). This operator, formed by typing a hyphen and then a greater-than symbol, does
for pointers to structures what the dot operator does for structure names. For example, if ps
points to a type inflatable structure, then ps->price is the price member of the pointed-to
structure. (See Figure 4.11.)

FIGURE 4.11
Identifying structure
members.

struct things
{
int good;
int bad;

grubnose isa

b
[
—

things grubnose = {3, 453};
things * pt = &grubnose;
-

structure.

pt points to the

Use . operator with
structure name.

grubnose structure.

grubnose.good grubnose.bad

grubnose structure ——— | 3 | 453 |

Use —operator with | |

pointer—to—structure. pt—-good pt — bad
Remember

Sometimes new C++ users become confused about when to use the dot operator and when to use
the arrow operator to specify a structure member. The rule is simple: If the structure identifier is the

name of a structure, use the dot operator. If the identifier is a pointer to the structure, use the arrow

operator.

A second, uglier approach to accessing structure members is to realize that if ps is a pointer to
a structure, then *ps represents the pointed-to value—the structure itself. Then, because *ps

167

168 C++ PRIMER PLUS, FIFTH EDITION

is a structure, (*ps).price is the price member of the structure. C++% operator precedence
rules require that you use parentheses in this construction.

Listing 4.21 uses new to create an unnamed structure and demonstrates both pointer notations
for accessing structure members.

LISTING 4.21 newstrct.cpp

// newstrct.cpp -- using new with a structure
#include <iostream>
struct inflatable // structure template

{
char name[20];
float volume;
double price;

b

int main()

{
using namespace std;
inflatable * ps = new inflatable; // allot memory for structure
cout << "Enter name of inflatable item: ";
cin.get(ps->name, 20); // method 1 for member access
cout << "Enter volume in cubic feet: ";
cin >> (*ps).volume; // method 2 for member access
cout << "Enter price: $";
cin >> ps->price;
cout << "Name: " << (*ps).name << endl; // method 2
cout << "Volume: " << ps->volume << " cubic feet\n"; // method 1
cout << "Price: $" << ps->price << endl; // method 1
delete ps; // free memory used by structure
return 0;

}

Here is a sample run of the program in Listing 4.21:

Enter name of inflatable item: Fabulous Frodo
Enter volume in cubic feet: 1.4

Enter price: $27.99

Name: Fabulous Frodo

Volume: 1.4 cubic feet

Price: $27.99

An Example of Using new and delete

Let’s look at an example that uses new and delete to manage storing string input from the key-
board. Listing 4.22 defines a function getname () that returns a pointer to an input string. This
function reads the input into a large temporary array and then uses new [] with an appropri-
ate size to create a chunk of memory sized to fit to the input string. Then, the function returns
the pointer to the block. This approach could conserve a lot of memory for programs that read
in a large number of strings.

Chapter 4 ¢« COMPOUND TYPES

Suppose your program has to read 1,000 strings and that the largest string might be 79 char-
acters long, but most of the strings are much shorter than that. If you used char arrays to hold
the strings, you’d need 1,000 arrays of 80 characters each. That’s 80,000 bytes, and much of
that block of memory would wind up being unused. Alternatively, you could create an array of
1,000 pointers to char and then use new to allocate only the amount of memory needed for
each string. That could save tens of thousands of bytes. Instead of having to use a large array
for every string, you fit the memory to the input. Even better, you could also use new to find
space to store only as many pointers as needed. Well, that’s a little too ambitious for right now.
Even using an array of 1,000 pointers is a little too ambitious for right now, but Listing 4.22
illustrates some of the technique. Also, just to illustrate how delete works, the program uses
it to free memory for reuse.

LISTING 4.22 delete.cpp

// delete.cpp -- using the delete operator
#include <iostream>

#include <cstring> /] or string.h

using namespace std;

char * getname(void); // function prototype

int main()

{
char * name; // create pointer but no storage
name = getname(); // assign address of string to name
cout << name << " at " << (int *) name << "\n";
delete [] name; // memory freed
name = getname(); // reuse freed memory
cout << name << " at " << (int *) name << "\n";
delete [] name; // memory freed again
return 0;

I3

char * getname() // return pointer to new string

{
char temp[80]; // temporary storage

cout << "Enter last name: ";
cin >> temp;

char * pn = new char[strlen(temp) + 1];

strcpy(pn, temp); // copy string into smaller space

return pn; // temp lost when function ends

}

Here is a sample run of the program in Listing 4.22:

Enter last name: Fredeldumpkin
Fredeldumpkin at 0x004326b8
Enter last name: Pook

Pook at 0x004301c8

170

C++ PRIMER PLUS, FIFTH EDITION

Program Notes

Consider the function getname () in the program in Listing 4.22. It uses cin to place an input
word into the temp array. Next, it uses new to allocate new memory to hold the word.
Including the null character, the program needs strlen(temp) + 1 characters to store the
string, so thats the value given to new. After the space becomes available, getname () uses the
standard library function strcpy () to copy the string from temp to the new block. The func-
tion doesn’t check to see whether the string fits, but getname () covers that by requesting the
right number of bytes with new. Finally, the function returns pn, the address of the string copy.

In main(), the return value (the address) is assigned to the pointer name. This pointer is
defined in main (), but it points to the block of memory allocated in the getname () function.
The program then prints the string and the address of the string.

Next, after it frees the block pointed to by name, main() calls getname () a second time. C++
doesn’t guarantee that newly freed memory is the first to be chosen the next time new is used,
and in this sample run, it isn’t.

Note in this example that getname () allocates memory and main() frees it. It’s usually not a
good idea to put new and delete in separate functions because that makes it easier to forget to
use delete. But this example does separate new from delete just to show that it is possible.

To appreciate some of the more subtle aspects of this program, you should know a little more
about how C++ handles memory. So let’s preview some material that’s covered more fully in
Chapter 9.

Automatic Storage, Static Storage, and Dynamic
Storage

C++ has three ways of managing memory for data, depending on the method used to allocate
memory: automatic storage, static storage, and dynamic storage, sometimes called the free
store or heap. Data objects allocated in these three ways differ from each other in how long
they remain in existence. We'll take a quick look at each type.

Automatic Storage

Ordinary variables defined inside a function use automatic storage and are called automatic
variables. These terms mean that the variables come into existence automatically when the
function containing them is invoked, and they expire when the function terminates. For exam-
ple, the temp array in Listing 4.22 exists only while the getname () function is active. When
program control returns to main (), the memory used for temp is freed automatically. If
getname () returned the address of temp, the name pointer in main () would be left pointing to a
memory location that would soon be reused. That’s one reason you have to use new in
getname().

Actually, automatic values are local to the block that contains them. A block is a section of code
enclosed between braces. So far, all our blocks have been entire functions. But as you'll see in

Chapter 4 ¢« COMPOUND TYPES 171

the next chapter, you can have blocks within a function. If you define a variable inside one of
those blocks, it exists only while the program is executing statements inside the block.

Static Storage

Static storage is storage that exists throughout the execution of an entire program. There are
two ways to make a variable static. One is to define it externally, outside a function. The other
is to use the keyword static when declaring a variable:

static double fee = 56.50;

Under K&R C, you can initialize only static arrays and structures, whereas C++ Release 2.0
(and later) and ANSI C allow you to initialize automatic arrays and structures, too. However,
as you may have discovered, some C++ implementations do not yet implement initialization
for automatic arrays and structures.

Chapter 9 discusses static storage in more detail. The main point you should note now about
automatic and static storage is that these methods rigidly define the lifetime of a variable.
Either the variable exists for the entire duration of a program (a static variable) or it exists only
while a particular function is being executed (an automatic variable).

Dynamic Storage

The new and delete operators provide a more flexible approach than automatic and static
variables. They manage a pool of memory, which C++ refers to as the free store. This pool is
separate from the memory used for static and automatic variables. As Listing 4.22 shows, new
and delete enable you to allocate memory in one function and free it in another. Thus, the
lifetime of the data is not tied arbitrarily to the life of the program or the life of a function.
Using new and delete together gives you much more control over how a program uses mem-
ory than does using ordinary variables.

=)
Ud Real-World Note: Stacks, Heaps, and Memory Leaks
N~

What happens if you don‘t call delete after creating a variable on the free store (or heap) with the
new operator? The variable or construct dynamically allocated on the free store continues to persist if
delete is not called, even though the memory that contains the pointer has been freed due to rules
of scope and object lifetime. In essence, you have no way to access the construct on the free store
because the pointer to the memory that contains it is gone. You have now created a memory leak.
Memory that has been leaked remains unusable through the life of the program; it's been allocated
but can’t be de-allocated. In extreme (though not uncommon) cases, memory leaks can be so severe
that they use up all the memory available to the application, causing it to crash with an out-of-
memory error. In addition, these leaks may negatively affect some operating systems or other appli-
cations running in the same memory space, causing them, in turn, to fail.

Even the best programmers and software companies create memory leaks. To avoid them, it's best to
get into the habit of joining your new and delete operators immediately, planning for and entering
the deletion of your construct as soon as you dynamically allocate it on the free store.

172

C++ PRIMER PLUS, FIFTH EDITION

ﬁ Note

Pointers are among the most powerful of C++ tools. They are also the most dangerous because they
permit computer-unfriendly actions, such as using an uninitialized pointer to access memory or
attempting to free the same memory block twice. Furthermore, until you get used to pointer nota-
tion and pointer concepts through practice, pointers can be confusing. Because pointers are an
important part of C++ programming, they weave in and out future discussions in this book. This
book discusses pointers several more times. The hope is that each exposure will make you more
comfortable with them.

Summary

Arrays, structures, and pointers are three C++ compound types. An array can hold several val-
ues, all of the same type, in a single data object. By using an index, or subscript, you can
access the individual elements in an array.

A structure can hold several values of different types in a single data object, and you can use
the membership operator (.) to access individual members. The first step in using structures is
to create a structure template that defines what members the structure holds. The name, or
tag, for this template then becomes a new type identifier. You can then declare structure vari-
ables of that type.

A union can hold a single value, but it can be of a variety of types, with the member name
indicating which mode is being used.

Pointers are variables that are designed to hold addresses. We say a pointer points to the
address it holds. The pointer declaration always states to what type of object a pointer points.
Applying the dereferencing operator (*) to a pointer yields the value at the location to which
the pointer points.

A string is a series of characters terminated by a null character. A string can be represented by
a quoted string constant, in which case the null character is implicitly understood. You can
store a string in an array of char, and you can represent a string with a pointer-to-char that is
initialized to point to the string. The strlen() function returns the length of a string, not
counting the null character. The strcpy () function copies a string from one location to
another. When using these functions, you include the cstring or the string.h header file.

The C++ string class, supported by the string header file, offers an alternative, more user-
friendly means to deal with strings. In particular, string objects are automatically resized to
accommodate stored strings, and you can use the assignment operator to copy a string.

The new operator lets you request memory for a data object while a program is running. The
operator returns the address of the memory it obtains, and you can assign that address to a
pointer. The only means to access that memory is to use the pointer. If the data object is a sim-
ple variable, you can use the dereferencing operator (*) to indicate a value. If the data object is
an array, you can use the pointer as if it were an array name to access the elements. If the data

Chapter 4 ¢« COMPOUND TYPES 173

object is a structure, you can use the pointer dereferencing operator (->) to access structure
members.

Pointers and arrays are closely connected. If ar is an array name, then the expression ar[i] is
interpreted as * (ar + i), with the array name interpreted as the address of the first element of
the array. Thus, the array name plays the same role as a pointer. In turn, you can use a pointer
name with array notation to access elements in an array allocated by new.

The new and delete operators let you explicitly control when data objects are allocated and
when they are returned to the memory pool. Automatic variables, which are those declared
within a function, and static variables, which are defined outside a function or with the key-
word static, are less flexible. An automatic variable comes into being when the block con-
taining it (typically a function definition) is entered, and it expires when the block is left. A
static variable persists for the duration of a program.

Review Questions

1. How would you declare each of the following?
a. actors is an array of 30 char.
b. betsie is an array of 100 short.
¢. chuck is an array of 13 float.
d. dipsea is an array of 64 long double.
2. Declare an array of five ints and initialize it to the first five odd positive integers.

3. Write a statement that assigns the sum of the first and last elements of the array in
Question 2 to the variable even.

4. Write a statement that displays the value of the second element in the float array
ideas.

5. Declare an array of char and initialize it to the string "cheeseburger".

6. Devise a structure declaration that describes a fish. The structure should include the
kind, the weight in whole ounces, and the length in fractional inches.

7. Declare a variable of the type defined in Question 6 and initialize it.

8. Use enum to define a type called Response with the possible values Yes, No, and Maybe.
Yes should be 1, No should be @, and Maybe should be 2.

9. Suppose ted is a double variable. Declare a pointer that points to ted and use the
pointer to display teds value.

10. Suppose treacle is an array of 10 floats. Declare a pointer that points to the first ele-
ment of treacle and use the pointer to display the first and last elements of the array.

174

C++ PRIMER PLUS, FIFTH EDITION

11.

12.

13.

14.

Write a code fragment that asks the user to enter a positive integer and then creates a
dynamic array of that many ints.

Is the following valid code? If so, what does it print?
cout << (int *) "Home of the jolly bytes";

Write a code fragment that dynamically allocates a structure of the type described in
Question 6 and then reads a value for the kind member of the structure.

Listing 4.6 illustrates a problem created by following numeric input with line-oriented
string input. How would replacing this:

cin.getline(address,80);

with this:

cin >> address;

affect the working of this program?

Programming Exercises
1

Write a C++ program that requests and displays information as shown in the following
example of output:

What is your first name? Betty Sue

What is your last name? Yew

What letter grade do you deserve? B

What is your age? 22

Name: Yew, Betty Sue

Grade: C

Age: 22

Note that the program should be able to accept first names that comprise more than one
word. Also note that the program adjusts the grade downward—that is, up one letter.
Assume that the user requests an A, a B, or a C so that you don’t have to worry about the
gap between a D and an E

Rewrite Listing 4.4, using the C++ string class instead of char arrays.

Write a program that asks the user to enter his or her first name and then last name, and
that then constructs, stores, and displays a third string, consisting of the user’s last name
followed by a comma, a space, and first name. Use char arrays and functions from the
cstring header file. A sample run could look like this:

Enter your first name: Flip
Enter your last name: Fleming
Here's the information in a single string: Fleming, Flip

Write a program that asks the user to enter his or her first name and then last name, and
that then constructs, stores, and displays a third string consisting of the user’s last name

Chapter 4 ¢« COMPOUND TYPES 175

followed by a comma, a space, and first name. Use string objects and methods from the
string header file. A sample run could look like this:
Enter your first name: Flip

Enter your last name: Fleming
Here's the information in a single string: Fleming, Flip

. The candyBar structure contains three members. The first member holds the brand
name of a candy bar. The second member holds the weight (which may have a fractional
part) of the candy bar, and the third member holds the number of calories (an integer
value) in the candy bar. Write a program that declares such a structure and creates a
CandyBar variable called snack, initializing its members to "Mocha Munch", 2.3, and
350, respectively. The initialization should be part of the declaration for snack. Finally,
the program should display the contents of the snack variable.

. The CandyBar structure contains three members, as described in Programming Exercise
5. Write a program that creates an array of three CandyBar structures, initializes them to
values of your choice, and then displays the contents of each structure.

. William Wingate runs a pizza-analysis service. For each pizza, he needs to record the fol-
lowing information:

* The name of the pizza company, which can consist of more than one word
* The diameter of the pizza
* The weight of the pizza

Devise a structure that can hold this information and write a program that uses a struc-
ture variable of that type. The program should ask the user to enter each of the preced-
ing items of information, and then the program should display that information. Use cin
(or its methods) and cout.

. Do Programming Exercise 7, but use new to allocate a structure instead of declaring a
structure variable. Also, have the program request the pizza diameter before it requests
the pizza company name.

. Do Programming Exercise 6, but, instead of declaring an array of three CandyBar struc-
tures, use new to allocate the array dynamically.

CHAPTER 5

LOOPS AND RELATIONAL
EXPRESSIONS

In this chapter you’ll learn about the following:

The for loop e Relational operators: >, >=, ==, <=,

. <, and !=
Expressions and statements

. e The while loo
The increment and decrement wnise P

operators: ++ and - - e The typedef facility
Combination assignment opera- e The do while loop
tors

e The get () character input method

Compound statements (blocks) e The end-of-file condition

Th mm rator . .
e comma operato ¢ Nested loops and two-dimensional

arrays

omputers do more than store data. They analyze, consolidate, rearrange, extract,
modify, extrapolate, synthesize, and otherwise manipulate data. Sometimes they even
distort and trash data, but we'll try to steer clear of that kind of behavior. To perform

their manipulative miracles, programs need tools for performing repetitive actions and for
making decisions. Of course, C++ provides such tools. Indeed, it uses the same for loops,
while loops, do while loops, if statements, and switch statements that regular C employs,
so if you know C, you can zip through chapter and Chapter 6, “Branching Statements and
Logical Operators.” (But don't zip too fast—you don’t want to miss how cin handles character
input!) These various program control statements often use relational expressions and logical
expressions to govern their behavior. This chapter discusses loops and relational expressions,
and Chapter 6 follows up with branching statements and logical expressions.

178

C++ PRIMER PLUS, FIFTH EDITION

Introducing for Loops

Circumstances often call on a program to perform repetitive tasks, such as adding together the
elements of an array one by one or printing some paean to productivity 20 times. The C++ for
loop makes such tasks easy to do. Let’s look at a loop in Listing 5.1, see what it does, and then
discuss how it works.

LISTING 5.1 forloop.cpp

// forloop.cpp -- introducing the for loop
#include <iostream>
int main()
{
using namespace std;
int i; // create a counter
// initialize; test ; update
for (1 =0; 1 < 5; it++)
cout << "C++ knows loops.\n";
cout << "C++ knows when to stop.\n";
return 0;

}
Here is the output from the program in Listing 5.1:

C++ knows loops.
C++ knows loops.
C++ knows loops.
C++ knows loops.
C++ knows loops.
C++ knows when to stop.

This loop begins by setting the integer i to O:

i=0

This is the loop initialization part of the loop. Then, in the loop test, the program tests whether
i is less than 5:

i<5

If it is, the program executes the following statement, which is termed the loop body:

cout << "C++ knows loops.\n";

Then, the program uses the loop update part of the loop to increase i by 1:

it++

The loop update part of the loop uses the ++ operator, called the increment operator. It incre-
ments the value of its operand by 1. (The increment operator is not restricted to for loops. For

example, you can use i++; instead of i = i + 1; asa statement in a program.) Incrementing
i completes the first cycle of the loop.

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 179

Next, the loop begins a new cycle by comparing the new i value with 5. Because the new
value (1) is also less than 5, the loop prints another line and then finishes by incrementing i
again. That sets the stage for a fresh cycle of testing, executing a statement, and updating the
value of i. The process continues until the loop updates i to 5. Then the next test fails, and
the program moves on to the next statement after the loop.

for Loop Parts

A for loop provides a step-by-step recipe for performing repeated actions. Let’s take a more
detailed look at how it’s set up. The usual parts of a for loop handle these steps:

1. Setting a value initially

2. Performing a test to see whether the loop should continue
3. Executing the loop actions

4. Updating value(s) used for the test

The C++ loop design positions these elements so that you can spot them at a glance. The ini-
tialization, test, and update actions constitute a three-part control section enclosed in paren-
theses. Each part is an expression, and semicolons separate the expressions from each other.
The statement following the control section is called the body of the loop, and it is executed as
long as the test expression remains true:

for (initialization; test-expression; update-expression)
body

C++ syntax counts a complete for statement as a single statement, even though it can incorpo-
rate one or more statements in the body portion. (Having more than one statement requires
using a compound statement, or block, as discussed later in this chapter.)

The loop performs initialization just once. Typically, programs use this expression to set a vari-
able to a starting value and then use the variable to count loop cycles.

test-expression determines whether the loop body gets executed. Typically, this expression
is a relational expression—that is, one that compares two values. Our example compares the
value of i to 5, checking whether i is less than 5. If the comparison is true, the program exe-
cutes the loop body. Actually, C++ doesn't limit test-expression to true/false comparisons.
You can use any expression, and C++ will type cast it to type bool. Thus, an expression with a
value of 0 is converted to the bool value false, and the loop terminates. If the expression
evaluates to nonzero, it is type cast to the bool value true, and the loop continues. Listing 5.2
demonstrates this by using the expression i as the test condition. (In the update section, i- - is
similar to i++ except that it decreases the value of i by 1 each time it’s used.)

180 C++ PRIMER PLUS, FIFTH EDITION

LISTING 5.2 num_test.cpp

/] num_test.cpp -- use numeric test in for loop
#include <iostream>
int main()

{

using namespace std;
cout << "Enter the starting countdown value: ";

int limit;

cin >> limit;

int i;

for (i = limit; i; i--) /] quits when i is @
cout << "i = " << i << "\n";

cout << "Done now that i = " << i << "\n";

return 0;

}
Here is the output from the program in Listing 5.2:

Enter the starting countdown value: 4

i=4
i=3
i=2
i=1

Done now that i = 0
Note that the loop terminates when i reaches 0.

How do relational expressions, such as i < 5, fit into this framework of terminating a loop
with a 0 value? Before the bool type was introduced, relational expressions evaluated to 1 if
true and O if false. Thus, the value of the expression 3 < 5 was 1 and the value of 5 < 5 was 0.
Now that C++ has added the bool type, however, relational expressions evaluate to the bool
literals true and false instead of 1 and @. This change doesn’t lead to incompatibilities, how-
ever, because a C++ program converts true and false to 1 and @ where integer values are
expected, and it converts 0 to false and nonzero to true where bool values are expected.

The for loop is an entry-condition loop. This means the test expression is evaluated before
each loop cycle. The loop never executes the loop body when the test expression is false. For
example, suppose you rerun the program in Listing 5.2 but give O as a starting value. Because
the test condition fails the very first time it’s evaluated, the loop body never gets executed:

Enter the starting countdown value: 0@
Done now that i = 0

This look-before-you-loop attitude can help keep a program out of trouble.

update-expression is evaluated at the end of the loop, after the body has been executed.
Typically, its used to increase or decrease the value of the variable keeping track of the number
of loop cycles. However, it can be any valid C++ expression, as can the other control expres-
sions. This makes the for loop capable of much more than simply counting from 0 to 5, the
way the first loop example does. You'll see some examples of this later.

The for loop body consists of a single statement, but you'll soon learn how to stretch that
rule. Figure 5.1 summarizes the for loop design.

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 181

FIGURE 5.1 statement1

The design of for loops. for (int_expr; test_expr; update_expr)
statement2

statement3

statement1

for loop

update_expr

statement2

statement3

A for statement looks something like a function call because it uses a name followed by
paired parentheses. However, for’s status as a C++ keyword prevents the compiler from think-
ing for is a function. It also prevents you from naming a function for.

@ Tip
B
Common C++ style is to place a space between for and the following parenthesis and to omit
space between a function name and the following parenthesis:
for (1 = 6; 1 < 10; i++)
smart_function(i);

Other control statements, such as if and while, are treated similarly to for. This serves to visually
reinforce the distinction between a control statement and a function call. Also, common practice is
to indent the body of a for statement to make it stand out visually.

Expressions and Statements

A for control section uses three expressions. Within its self-imposed limits of syntax, C++ is a
very expressive language. Any value or any valid combination of values and operators consti-
tute an expression. For example, 10 is an expression with the value 10 (no surprise), and 28 *
20 is an expression with the value 560. In C++ every expression has a value. Often the value is
obvious. For example, the expression

22 + 27

182

C++ PRIMER PLUS, FIFTH EDITION

is formed from two values and the addition operator, and it has the value 49. Sometimes the
value is less obvious. For example,

X = 20

is an expression because it’s formed from two values and the assignment operator. C++ defines
the value of an assignment expression to be the value of the member on the left, so the expres-
sion has the value 20. The fact that assignment expressions have values permits statements
such as the following:

maids = (cooks = 4) + 3;

The expression cooks = 4 has the value 4, so maids is assigned the value 7. However, just
because C++ permits this behavior doesn’t mean you should encourage it. But the same rule
that makes this peculiar statement possible also makes the following useful statement possible:

X:y:z:@;

This is a fast way to set several variables to the same value. The precedence table (see
Appendix D, “Operator Precedence”) reveals that assignment associates right-to-left, so first @
is assigned to z, and then z = 0 is assigned to y, and so on.

Finally, as mentioned previously, relational expressions such as x < y evaluate to the bool val-
ues true or false. The short program in Listing 5.3 illustrates some points about expression
values. The << operator has higher precedence than the operators used in the expressions, so
the code uses parentheses to enforce the correct order.

LISTING 5.3 express.cpp

/| express.cpp -- values of expressions
#include <iostream>
int main()
{
using namespace std;
int x;
cout << "The expression x = 100 has the value ";
cout << (x = 100) << endl;
cout << "Now x = " << X << endl;
cout << "The expression x < 3 has the value ";
cout << (x < 3) << endl;
cout << "The expression x > 3 has the value ";
cout << (x > 3) << endl;
cout.setf(ios_base::boolalpha); //a newer C++ feature
cout << "The expression x < 3 has the value ";
cout << (x < 3) << endl;
cout << "The expression x > 3 has the value ";
cout << (x > 3) << endl;
return 0;

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 183

@ Compatibility Note

Older implementations of C++ may require using ios: :boolalpha instead of ios_base: :boolal-
pha as the argument for cout.setf (). Even older implementations might not recognize either form.

Here is the output from the program in Listing 5.3:

The expression x = 100 has the value 100
Now x = 100

The expression
The expression
The expression
The expression

< 3 has the value 0

> 3 has the value 1

< 8 has the value false
> 3 has the value true

X X X X

Normally, cout converts bool values to int before displaying them, but the
cout.setf(ios::boolalpha) function call sets a flag that instructs cout to display the words
true and false instead of 1 and 0.

Remember

A C++ expression is a value or a combination of values and operators, and every C++ expression has
a value.

To evaluate the expression x = 100, C++ must assign the value 100 to x. When the very act of
evaluating an expression changes the value of data in memory, we say the evaluation has a side
effect. Thus, evaluating an assignment expression has the side effect of changing the assignee’s
value. You might think of assignment as the intended effect, but from the standpoint of how
C++ is constructed, evaluating the expression is the primary effect. Not all expressions have
side effects. For example, evaluating x + 15 calculates a new value, but it doesn’t change the
value of x. But evaluating ++x + 15 does have a side effect because it involves incrementing x.

From expression to statement is a short step; you just add a semicolon. Thus

age = 100

is an expression, whereas

age = 100;

is a statement. Any expression can become a statement if you add a semicolon, but the result
might not make programming sense. For example, if rodents is a variable, then

rodents + 6; // valid, but useless, statement

is a valid C++ statement. The compiler allows it, but the statement doesn’t accomplish any-

thing useful. The program merely calculates the sum, does nothing with it, and goes on to the
next statement. (A smart compiler might even skip the statement.)

184

C++ PRIMER PLUS, FIFTH EDITION

Nonexpressions and Statements

Some concepts, such as knowing the structure of a for loop, are crucial to understanding C++.
But there are also relatively minor aspects of syntax that can suddenly bedevil you just when
you think you understand the language. We'll look at a couple of them now.

Although it is true that adding a semicolon to any expression makes it a statement, the reverse
is not true. That is, removing a semicolon from a statement does not necessarily convert it to
an expression. Of the kinds of statements we've used so far, return statements, declaration
statements, and for statements don't fit the statement = expression + semicolon mold. For
example, this is a statement:

int toad;

But the fragment int toad is not an expression and does not have a value. This makes code
such as the following invalid:

eggs = int toad * 1000; // 1invalid, not an expression
cin >> int toad; // can't combine declaration with cin

Similarly, you can't assign a for loop to a variable. In the following example, the for loop is
not an expression, so it has no value and you can’t assign it:

int fx = for (i = 0; i< 4; i++)
cout >> 1i; // not possible

Bending the Rules

C++ adds a feature to C loops that requires some artful adjustments to the for loop syntax.
This was the original syntax:

for (expression; expression; expression)
Statement

In particular, the control section of a for structure consisted of three expressions, as defined
earlier in this chapter, separated by semicolons. C++ loops allow you do to things like the fol-
lowing, however:

for (int i = 0; i < 5; i++)

That is, you can declare a variable in the initialization area of a for loop. This can be conve-
nient, but it doesn' fit the original syntax because a declaration is not an expression. This once
outlaw behavior was originally accommodated by defining a new kind of expression, the dec-
laration-statement expression, which was a declaration stripped of the semicolon, and which
could appear only in a for statement. That adjustment has been dropped, however. Instead,
the syntax for the for statement has been modified to the following:

for (for-init-statement condition; expression)
Statement

At first glance, this looks odd because there is just one semicolon instead of two. But that’s
okay because for-init-statement is identified as a statement, and a statement has its own
semicolon. As for for-init-statement, it’s identified as either an expression-statement or a

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 185

declaration. This syntax rule replaces an expression followed by a semicolon with a statement,
which has its own semicolon. What this boils down to is that C++ programmers want to be
able to declare and initialize a variable in a for loop initialization, and they’ll do whatever is
necessary to C++ syntax and to the English language to make it possible.

There’s a practical aspect to declaring a variable in for-init-statement that you should know
about. Such a variable exists only within the for statement. That is, after the program leaves
the loop, the variable is eliminated:
for (int 1 = 0; 1 < 5; i++)

cout << "C++ knows loops.\n";
cout << i << endl; // oops! i no longer defined

Another thing you should know is that some C++ implementations follow an earlier rule and
treat the preceding loop as if i were declared before the loop, thus making it available after the
loop terminates. Use of this new option for declaring a variable in a for loop initialization
results, at least at this time, in different behaviors on different systems.

6 3
é Caution
—

At the time of writing, not all compilers have implemented the current rule that a variable declared
in a for loop control section expires when the loop terminates. For example, Microsoft Visual C++
prior to 7.1 by default follows the old rule, mainly because much code in existing Microsoft libraries
was written before the new rule was adopted. (Version 7.1, in a valiant, but nonstandard, attempt to
live with both rules, accepts code written either way.)

Back to the for Loop

Let’s be a bit more ambitious with loops. Listing 5.4 uses a loop to calculate and store the first
16 factorials. Factorials, which are handy for computing odds, are calculated the following
way. Zero factorial, written as 0!, is defined to be 1. Then, 1!is 1 * 0!, or 1. Next, 2!is 2 * 1!,
or 2. Then, 3!is 3 * 2!, or 6, and so on, with the factorial of each integer being the product of
that integer with the preceding factorial. (One of the pianist Victor Borge’s best-known mono-
logues features phonetic punctuation, in which the exclamation mark is pronounced some-
thing like phffft pptz, with a moist accent. However, in this case, “!” is pronounced “factorial.”)
The program uses one loop to calculate the values of successive factorials, storing them in an
array. Then it uses a second loop to display the results. Also, the program introduces the use of
external declarations for values.

LISTING 5.4 formore.cpp

// formore.cpp -- more looping with for

#include <iostream>

using namespace std;

const int ArSize = 16; /1 example of external declaration
int main()

{

186

C++ PRIMER PLUS, FIFTH EDITION

LISTING 5.4 Continued

double factorials[ArSize];

factorials[1] = factorials[0] = 1.0;
/] int 1i;
for (int 1 = 2; 1 < ArSize; i++)
factorials[i] = i * factorials[i-1];
for (i = 0; 1 < ArSize; i++)
cout << i << "l =" << factorials[i] << endl;
return 0;
}
Here is the output from the program in Listing 5.4
0! =1
11 =1
21 =2
3! =6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3.6288e+006
11! = 3.99168e+007
12! = 4.79002¢+008
13! = 6.22702e+009
14! = 8.71783e+010
15! = 1.30767e+012

Factorials get big fast!

Program Notes

The program in Listing 5.4 creates an array to hold the factorial values. Element 0 is 0!, ele-
ment 1 is 1!, and so on. Because the first two factorials equal 1, the program sets the first two
elements of the factorials array to 1.0. (Remember, the first element of an array has an index
value of 0.) After that, the program uses a loop to set each factorial to the product of the index
with the previous factorial. The loop illustrates that you can use the loop counter as a variable
in the body of the loop.

The program in Listing 5.4 demonstrates how the for loop works hand-in-hand with arrays
by providing a convenient means to access each array member in turn. Also, formore.cpp uses
const to create a symbolic representation (ArSize) for the array size. Then it uses ArSize
wherever the array size comes into play, such as in the array definition and in the limits for the
loops handling the array. Now, if you wish to extend the program to, say, 20 factorials, you just
have to set ArSize to 20 in the program and recompile. By using a symbolic constant, you
avoid having to change every occurrence of 16 to 20 individually.

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 187

It's usually a good idea to define a const value to represent the number of elements in an array. You
can use the const value in the array declaration and in all other references to the array size, such as
ina for loop.

The limit i < ArSize expression reflects the fact that subscripts for an array with ArSize
elements run from @ to ArSize - 1, so the array index should stop one short of ArSize. You
could use the test i <= ArSize - 1 instead, but it looks awkward in comparison.

Note that the program declares the const int variable ArSize outside the body of main(). As
the end of Chapter 4, “Compound Types,” mentions, this makes ArSize external data. The two
consequences of declaring ArSize in this fashion are that ArSize exists for the duration of the
program and that all functions in the program file can use it. In this particular case, the pro-
gram has just one function, so declaring ArSize externally has little practical effect. But multi-
function programs often benefit from sharing external constants, so we'll practice using them
next.

Changing the Step Size
So far the loop examples in this chapter have increased or decreased the loop counter by one
in each cycle. You can change that by changing the update expression. The program in Listing
5.5, for example, increases the loop counter by a user-selected step size. Rather than use i++ as
the update expression, it uses the expression i = i + by, where by is the user-selected step
size.

LISTING 5.5 bigstep.cpp

// bigstep.cpp -- count as directed
#include <iostream>
int main()
{
using namespace std;
cout << "Enter an integer: ";
int by;
cin >> by;
cout << "Counting by " << by << "s:\n";
for (int 1 = 0; 1 < 100; i = i + by)
cout << i << endl;
return 0;

}

Here is a sample run of the program in Listing 5.5:

Enter an integer: 17
Counting by 17s:
0

17
34

188

C++ PRIMER PLUS, FIFTH EDITION

51
68
85

When i reaches the value 102, the loop quits. The main point here is that the update expres-
sion can be any valid expression. For example, if you want to square i and add 10 in each
cycle,youcanusei = i * i + 10.

Inside Strings with the for Loop

The for loop provides a direct way to access each character in a string in turn. For example,
Listing 5.6 enables you to enter a string and then displays the string character-by-character, in
reverse order. You could use either a string class object or an array of char in this example
because both allow you to use array notation to access individual characters in a string; Listing
5.6 uses a string class object. The string class size () method yields the number of charac-
ters in the string; the loop uses that value in its initializing expression to set i to the index of
the last character in the string, not counting the null character. To count backward, the pro-
gram uses the decrement operator (- -) to decrease the array subscript by one in each loop.
Also, Listing 5.6 uses the greater-than-or-equal-to relational operator (>=) to test whether the
loop has reached the first element. We'll summarize all the relational operators soon.

LISTING 5.6 forstri.cpp

// forstri.cpp -- using for with a string
#include <iostream>
#include <string>
int main()
{
using namespace std;
cout << "Enter a word: ";
string word;
cin >> word;

// display letters in reverse order

for (int 1 = word.size() - 1; 1 >= 0; 1i--)
cout << word[i];

cout << "\nBye.\n";

return 0;

}

Here is a sample run of the program in Listing 5.6:

Enter a word: animal
lamina
Bye.

Yes, the program succeeds in printing animal backward; choosing animal as a test word more
clearly illustrates the effect of this program than choosing, say, a palindrome such as redder or
stats.

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 189

The Increment (++) and Decrement (- -) Operators

C++ features several operators that are frequently used in loops; let’s take a little time to exam-
ine them now. You've already seen two: the increment operator (++), which inspired the name
C++, and the decrement operator (- -). These operators perform two exceedingly common
loop operations: increasing and decreasing a loop counter by one. However, there’s more to
their story than you've seen to this point. Each operator comes in two varieties. The prefix ver-
sion comes before the operand, as in ++x. The postfix version comes after the operand, as in
x++. The two versions have the same effect on the operand, but they differ in terms of when
they take place. It’s like getting paid for mowing the lawn in advance or afterward; both meth-
ods have the same final effect on your wallet, but they differ in when the money gets added.
Listing 5.7 demonstrates this difference for the increment operator.

LISTING 5.7 plus_one.cpp

// plus_one.cpp -- the increment operator
#include <iostream>

int main()

{
using namespace std;
int a = 20;
int b = 20;
cout << 'a =" <<a<< "t b="<<h<<"\n";
Ccout << "a++ = " << g++ << ": ++b = " << ++bh << "\n";
cout << "a = " <<a<< "t pb="<<b<<"\n"
return 0;

}

Here is the output from the program in Listing 5.7:

a =20: b =20

at+t = 20: ++b = 21

a = 21: b =21

Roughly speaking, the notation a++ means “use the current value of a in evaluating an expres-
sion, and then increment the value of a.” Similarly, the notation ++b means “first increment the
value of b, and then use the new value in evaluating the expression.” For example, we have the
following relationships:

int x = 5;

int y = ++x; // change x, then assign to y
/l'y is 6, x is 6

int z = 5;

int y = z++; // assign to y, then change z

//'y is 5, z is 6

Using the increment and decrement operators is a concise, convenient way to handle the com-
mon task of increasing or decreasing values by one.

190

C++ PRIMER PLUS, FIFTH EDITION

The increment and decrement operators are nifty little operators, but don’t get carried away
and increment or decrement the same value more than once in the same statement. The prob-
lem is that the use-then-change and change-then-use rules can become ambiguous. That is, a
statement such as this

X =2 % xt+ * (3 - ++x); // don't do it

can produce quite different results on different systems. C++ does not define correct behavior
for this sort of statement.

Side Effects and Sequence Points

Let’s take a closer look at what C++ does and doesn’t say about when increment operators take
effect. First, recall that a side effect is an effect that occurs when evaluating an expression mod-
ifies something, such as a value stored in a variable. A sequence point is a point in program
execution at which all side effects are guaranteed to be evaluated before going on to the next
step. In C++ the semicolon in a statement marks a sequence point. That means all changes
made by assignment operators, increment operators, and decrement operators in a statement
must take place before a program proceeds to the next statement. Some operators that we’ll
discuss in later chapters have sequence points. Also, the end of any full expression is a
sequence point.

What a full expression? It’s an expression that’s not a subexpression of a larger expression.
Examples of full expressions include an expression portion of an expression statement and an
expression that serves as a test condition for a while loop.

Sequence points help clarify when postfix incrementation takes place. Consider, for instance,
the following code:

while (guests++ < 10)
printf("%d \n", guests);

Sometimes C++ newcomers assume that “use the value, then increment it” means, in this con-
text, to increment guests after it’s used in the printf () statement. However, the guests++ <
10 expression is a full expression because it is a while loop test condition, so the end of this
expression is a sequence point. Therefore, C++ guarantees that the side effect (incrementing
guests) takes place before the program moves on to printf (). Using the postfix form, how-
ever, guarantees that guests will be incremented after the comparison to 10 is made.

Now consider this statement:
y = (4 + x++) + (6 + x++);

The expression 4 + x++ is not a full expression, so C++ does not guarantee that x will be
incremented immediately after the subexpression 4 + x++ is evaluated. Here the full expres-
sion is the entire assignment statement, and the semicolon marks the sequence point, so all
that C++ guarantees is that x will have been incremented twice by the time the program moves
to the following statement. C++ does not specify whether x is incremented after each subex-
pression is evaluated or only after all the expressions have been evaluated, which is why you
should avoid statements of this kind.

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 191

Prefixing Versus Postfixing

Clearly, whether you use the prefix or postfix form makes a difference if the value is used for
some purpose, such as a function argument or assigning to a variable. But what if the value of
an increment or decrement expression isn't used? For example, are

X++;

and

++X;

different from one another? Or are

for (n = lim; n > Q; --n)

and

for (n = 1lim; n > Q; n--)

.
different from one another?

Logically, whether the prefix or postfix forms are used makes no difference in these two situa-
tions. The values of the expressions aren’t used, so the only effects are the side effects. Here the
expressions using the operators are full expressions, so the side effects of incrementing x and
decrementing n are guaranteed to be performed by the time the program moves on to the next
step; the prefix form and postfix form lead to the same final result.

However, although the choice between prefix and postfix forms has no effect on the program’s
behavior, it is possible for the choice to have a small effect on execution speed. For built-in
types and modern compilers, this seems to be a non-issue. But C++ lets you define these oper-
ators for classes. In that case, the user defines a prefix function that works by incrementing a
value and then returning it. But the postfix version works by first stashing a copy of the value,
incrementing the value, and then returning the stashed copy. Thus, for classes, the prefix ver-
sion is a bit more efficient than the postfix version.

In short, for built-in types, it mostly likely makes no difference which form you use. For user-
defined types having user-defined increment and decrement operators, the prefix form is more
efficient.

The Increment/Decrement Operators and Pointers

You can use increment operators with pointers as well as with basic variables. Recall that
adding an increment operator to a pointer increases its value by the number of bytes in the
type it points to. The same rule holds for incrementing and decrementing pointers:

double arr[5] = {21.1, 32.8, 23.4, 45.2, 37.4};

double *pt = arr; // pt points to arr[0Q], i.e. to 21.1
++pt; // pt points to arr[1], i.e. to 32.8

You can also use these operators to change the quantity a pointer points to by using them in
conjunction with the * operator. Applying both * and ++ to a pointer raises the questions of

192

C++ PRIMER PLUS, FIFTH EDITION

what gets dereferenced and what gets incremented. Those actions are determined by the place-
ment and precedence of the operators. The prefix increment, prefix decrement, and derefer-
encing operators all have the same precedence and associate from right to left. The postfix
increment and decrement operators both have the same precedence, which is higher than the
prefix precedence. These two operators associate from left to right.

The right-to-left association rule for prefix operators implies that *++pt means first apply ++ to
pt (because the ++ is to the right of the *) and then apply * to the new value of pt:

*++pt; // increment pointer, take the value; i.e., arr[2], or 23.4

On the other hand, ++*pt means obtain the value that pt points to and then increment that
value:

++*pt; // increment the pointed to value; i.e., change 23.4 to 24.4
Here, pt remains pointing to arr[2].

Next, consider this combination:

(*pt)++; // increment pointed-to value

The parentheses indicate that first the pointer is dereferenced, yielding 24.4. Then the ++
operator increments that value to 25.4; pt remains pointing at arr[2].

Finally, consider this combination:

*pt++; // dereference original location, then increment pointer

The higher precedence of the postfix ++ operator means the ++ operator operates on pt, not on
*pt, so the pointer is incremented. But the fact that the postfix operator is used means that the
address that gets dereferenced is the original address, &arr[2], not the new address. Thus,
the value of *pt++is arr[2], or 25.4, but the value of pt after the statement completes is the
address of arr[3].

Remember

Incrementing and decrementing pointers follow pointer arithmetic rules. Thus, if pt points to the
first member of an array, ++pt changes pt so that it points to the second member.

Combination Assignment Operators

Listing 5.5 uses the following expression to update a loop counter:

i=1i+by

C++ has a combined addition and assignment operator that accomplishes the same result more
concisely:

i += by

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 193

The += operator adds the values of its two operands and assigns the result to the operand on
the left. This implies that the left operand must be something to which you can assign a value,
such as a variable, an array element, a structure member, or data you identify by dereferencing

a pointer:

int k = 5;

k += 3; // ok, k set to 8

int *pa = new int[10]; // pa points to pa[Q]

pa[4] = 12;

pa[4] += 6; /] ok, pa[4] set to 18

*(pa + 4) += 7; /] ok, pa[4] set to 25

pa += 2; // ok, pa points to the former pa[2]
34 += 10; // quite wrong

Each arithmetic operator has a corresponding assignment operator, as summarized in Table
5.1. Each operator works analogously to +=. Thus, for example, the statement

k *= 10;

replaces the current value of k with a value 10 times greater.

TABLE 5.1 Combined Assignment Operators

Operator Effect (L=left operand, R=right operand)

+= AssignsL+RtoL

-= AssignsL—RtoL

*= AssignsL *Rto L

/= AssignsL/RtoL

o°
1]

Assigns L % Rto L

Compound Statements, or Blocks

The format, or syntax, for writing a C++ for statement might seem restrictive to you because
the body of the loop must be a single statement. That’s awkward if you want the loop body to
contain several statements. Fortunately, C++ provides a syntax loophole through which you
may stuff as many statements as you like into a loop body. The trick is to use paired braces to
construct a compound statement, or block. The block consists of paired braces and the state-
ments they enclose and, for the purposes of syntax, counts as a single statement. For example,
the program in Listing 5.8 uses braces to combine three separate statements into a single
block. This enables the body of the loop to prompt the user, read input, and do a calculation.
The program calculates the running sum of the numbers you enter, and this provides a natural
occasion for using the += operator.

194

C++ PRIMER PLUS, FIFTH EDITION

LISTING 5.8 block.cpp

// block.cpp -- use a block statement
#include <iostream>
int main()
{
using namespace std;
cout << "The Amazing Accounto will sum and average ";
cout << "five numbers for you.\n";
cout << "Please enter five values:\n";
double number;
double sum = 0.0;
for (int 1 = 1; i <= 5; i++)
{ // block starts here
cout << "Value " << i << "1 "
cin >> number;
sum += number;
} // block ends here
cout << "Five exquisite choices indeed! ";
cout << "They sum to " << sum << endl;
cout << "and average to " << sum / 5 << ".\n";
cout << "The Amazing Accounto bids you adieu!\n";
return 0;

}

Here is a sample run of the program in Listing 5.8:

The Amazing Accounto will sum and average five numbers for you.
Please enter five values:

Value 1: 1942

Value 2: 1948

Value 3: 1957

Value 4: 1974

Value 5: 1980

Five exquisite choices indeed! They sum to 9801

and average to 1960.2.

The Amazing Accounto bids you adieu!

Suppose you leave in the indentation but omit the braces:

for (int 1 = 1; 1 <= 5; i++)
cout << "Value " << i << ": "y // loop ends here
cin >> number; // after the loop
sum += number;

cout << "Five exquisite choices indeed! ";

The compiler ignores indentation, so only the first statement would be in the loop. Thus, the
loop would print the five prompts and do nothing more. After the loop completes, the pro-
gram moves to the following lines, reading and summing just one number.

Compound statements have another interesting property. If you define a new variable inside a
block, the variable persists only as long as the program is executing statements within the
block. When execution leaves the block, the variable is deallocated. That means the variable is
known only within the block:

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 195

#include <iostream>
using namespace std;

int main()
{
int x = 20;
{ /] block starts
int y = 100;
cout << x << endl; // ok
cout <<y << endl; /1 ok
} // block ends
cout << x << endl; // ok
cout << y << endl; // invalid, won't compile
return 0;
I3

Note that a variable defined in an outer block is still defined in the inner block.

What happens if you declare a variable in a block that has the same name as one outside the
block? The new variable hides the old one from its point of appearance until the end of the
block. Then, the old one becomes visible again, as in this example:

int main()
{
int x = 20; // original x
{ /] block starts
cout << x << endl; // use original x
int x = 100; /] new x
cout << x << endl; // use new x
} // block ends
cout << x << endl; // use original x
return 0;
}

The Comma Operator (or More Syntax Tricks)

As you have seen, a block enables you to sneak two or more statements into a place where
C++ syntax allows just one statement. The comma operator does the same for expressions,
enabling you to sneak two expressions into a place where C++ syntax allows only one expres-
sion. For example, suppose you have a loop in which one variable increases by one each cycle
and a second variable decreases by one each cycle. Doing both in the update part of a for loop
control section would be convenient, but the loop syntax allows just one expression there. The
solution is to use the comma operator to combine the two expressions into one:

++j, --1 // two expressions count as one for syntax purposes

The comma is not always a comma operator. For example, the comma in this declaration
serves to separate adjacent names in a list of variables:

int i, j; // comma is a separator here, not an operator
Listing 5.9 uses the comma operator twice in a program that reverses the contents of a string

class object. (You could also write the program by using an array of char, but the length of the
word would be limited by your choice of array size.) Note that Listing 5.6 displays the

196 C++ PRIMER PLUS, FIFTH EDITION

contents of an array in reverse order, but Listing 5.9 actually moves characters around in the
array. The program in Listing 5.9 also uses a block to group several statements into one.

LISTING 5.9 forstr2.cpp

// forstr2.cpp -- reversing an array
#include <iostream>
#include <string>
int main()
{
using namespace std;
cout << "Enter a word: ";
string word;
cin >> word;

// physically modify string object

char temp;

int i, j;

for (j = 0, 1 = word.size() - 1; j < 1i; --1i, ++j)
{ /| start block

temp = word[i];
word[i] = word[j];
word[]j] = temp;

} // end block
cout << word << "\nDone\n";
return 0;

}

Here is a sample run of the program in Listing 5.9:

Enter a word: parts
strap
Done

By the way, the string class offers more concise ways to reverse a string, but we’ll leave those
for Chapter 16, “The string Class and the Standard Template Library.”

Program Notes

Look at the for control section of the program in Listing 5.9.

First, it uses the comma operator to squeeze two initializations into one expression for the first
part of the control section. Then it uses the comma operator again to combine two updates
into a single expression for the last part of the control section.

Next, look at the body. The program uses braces to combine several statements into a single
unit. In the body, the program reverses the word by switching the first element of the array
with the last element. Then it increments j and decrements i so that they now refer to the
next-to-the-first element and the next-to-the-last element. After this is done, the program
swaps those elements. Note that the test condition j<i makes the loop stop when it reaches
the center of the array. If it were to continue past that point, it would begin swapping the
switched elements back to their original positions. (See Figure 5.2.)

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 197

FIGURE 5.2

Reversing a string, [i=0,i=4 Swap word [0] with word [4].|

Lelefr]efe]
index 0 1 2 3 4

[efrfe]o

index 0 1 2 3 4

»

| jHy i-- Swap word [1] with word [3]. |

DEEE

index 0 1 2 3 4

7]

o |
B
- |
B
< |

index 0 1 2 3 4

| --i,++j Now j>1 becomes false so loop terminates.l

Another thing to note is the location for declaring the variables temp, i, and j. The code
declares i and j before the loop because you can’t combine two declarations with a comma
operator. That’s because declarations already use the comma for another purpose—separating
items in a list. You can use a single declaration-statement expression to create and initialize
two variables, but it’s a bit confusing visually:

int j = 0, 1 = word.size() - 1;

In this case the comma is just a list separator, not the comma operator, so the expression
declares and initializes both j and i. However, it looks as if it declares only j.

Incidentally, you can declare temp inside the for loop:
int temp = word[i];
This may result in temp being allocated and deallocated in each loop cycle. This might be a bit

slower than declaring temp once before the loop. On the other hand, after the loop is finished,
temp is discarded if it's declared inside the loop.

Comma Operator Tidbits

By far the most common use for the comma operator is to fit two or more expressions into a
single for loop expression. But C++ does provide the operator with two additional properties.
First, it guarantees that the first expression is evaluated before the second expression. (In other
words, the comma operator is a sequence point.) Expressions such as the following are safe:

i=20, j=2*1 // i set to 20, j set to 40

198

C++ PRIMER PLUS, FIFTH EDITION

Second, C++ states that the value of a comma expression is the value of the second part of the
expression. The value of the preceding expression, for example, is 40, because that is the value
ofj =2 * i

The comma operator has the lowest precedence of any operator. For example, this statement:
cats = 17,240;

gets read as this:

(cats = 17), 240;

That is, cats is set to 17, and 240 does nothing. But, because parentheses have high prece-
dence, this:

cats = (17,240);

results in cats being set to 240, the value of the expression on the right of the comma.

Relational Expressions

Computers are more than relentless number crunchers. They have the capability to compare
values, and this capability is the foundation of computer decision making. In C++ relational
operators embody this ability. C++ provides six relational operators to compare numbers.
Because characters are represented by their ASCII codes, you can use these operators with
characters, too. They don't work with C-style strings, but they do work with string class
objects. Each relational expression reduces to the bool value true if the comparison is true
and to the bool value false if the comparison is false, so these operators are well suited for
use in a loop test expression. (Older implementations evaluate true relational expressions to 1
and false relational expressions to @.) Table 5.2 summarizes these operators.

TABLE 5.2 Relational Operators

Operator Meaning

Is less than

Is less than or equal to

Is equal to

Is greater than

Is greater than or equal to

Is not equal to

The six relational operators exhaust the comparisons C++ enables you to make for numbers. If
you want to compare two values to see which is the more beautiful or the luckier, you must
look elsewhere.

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 199

Here are some Sample tests:

for (x = 20; x > 5; x--) // continue while x is greater than 5
for (x = 1; y != x; ++x) // continue while y is not equal to x
for (cin >> x; x == 0; cin >> X)) // continue while x is @

The relational operators have a lower precedence than the arithmetic operators. That means
this expression:

XxX+3>y -2 // Expression 1
corresponds to this:

(x +3) > (y - 2) // Expression 2

and not to the following:

X+ (3>y) -2 /| Expression 3

Because the expression (3 > y) is either 1 or 0 after the bool value is promoted to int,
Expressions 2 and 3 are both valid. But most of us would want Expression 1 to mean
Expression 2, and that is what C++ does.

A Mistake You’ll Probably Make

Don't confuse testing the is-equal-to operator (==) with the assignment operator (=). This
expression:

musicians == 4 // comparison

asks the musical question Is musicians equal to 4? The expression has the value true or
false. This expression:

musicians = 4 /] assignment

assigns the value 4 to musicians. The whole expression, in this case, has the value 4 because
that’s the value of the left side.

The flexible design of the for loop creates an interesting opportunity for error. If you acciden-
tally drop an equals sign (=) from the == operator and use an assignment expression instead of
a relational expression for the test part of a for loop, you still produce valid code. That’s
because you can use any valid C++ expression for a for loop test condition. Remember that
nonzero values test as true and zero tests as false. An expression that assigns 4 to musicians
has the value 4 and is treated as true. If you come from a language, such as Pascal or BASIC,
that uses = to test for equality, you might be particularly prone to this slip.

Listing 5.10 shows a situation in which you can make this sort of error. The program attempts
to examine an array of quiz scores and stops when it reaches the first score that’s not 20. It
shows a loop that correctly uses comparison and then one that mistakenly uses assignment in
the test condition. The program also has another egregious design error that you'll see how to
fix later. (You learn from your mistakes, and Listing 5.10 is happy to help in that respect.)

200 C++ PRIMER PLUS, FIFTH EDITION

LISTING 5.10 equal.cpp

// equal.cpp -- equality vs assignment
#include <iostream>
int main()
{
using namespace std;
int quizscores[10] =
{ 20, 20, 20, 20, 20, 19, 20, 18, 20, 20};

cout << "Doing it right:\n";

int i;

for (1 = @; quizscores[i] == 20; i++)
cout << "quiz " << i << " is a 20\n";

cout << "Doing it dangerously wrong:\n";
for (i = @; quizscores[i] = 20; i++)
cout << "quiz " << i << " is a 20\n";

return 0;

}

Because the program in Listing 5.10 has a serious problem, you might prefer reading about it
to actually running it. Here is some sample output from the program:

Doing it right:

quiz 0 is a 20
quiz 1 is a 20
quiz 2 is a 20
quiz 3 is a 20
quiz 4 is a 20
Doing it dangerously wrong:
quiz 0 is a 20
quiz 1 is a 20
quiz 2 is a 20
quiz 3 is a 20
quiz 4 is a 20
quiz 5 is a 20
quiz 6 is a 20
quiz 7 is a 20
quiz 8 is a 20
quiz 9 is a 20

quiz 10 is a 20
quiz 11 is a 20
quiz 12 is a 20
quiz 13 is a 20

The first loop correctly halts after displaying the first five quiz scores. But the second starts by
displaying the whole array. Worse than that, it says every value is 20. And worse still, it doesn’t
stop at the end of the array!

Where things go wrong, of course, is with the following test expression:

quizscores[i] = 20

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 201

First, simply because it assigns a nonzero value to the array element, the expression is always
nonzero, hence always true. Second, because the expression assigns values to the array ele-
ments, it actually changes the data. Third, because the test expression remains true, the pro-
gram continues changing data beyond the end of the array. It just keeps putting more and
more 20s into memory! This is not good.

The difficulty with this kind of error is that the code is syntactically correct, so the compiler
won't tag it as an error. (However, years and years of C and C++ programmers making this
error has eventually led many compilers to issue a warning, asking if that’s what you really
meant to do.)

6 3
é Caution
—

Don't use = to compare for equality; use ==.

Like C, C++ grants you more freedom than most programming languages. This comes at the
cost of requiring greater responsibility on your part. Nothing but your own good planning pre-
vents a program from going beyond the bounds of a standard C++ array. However, with C++
classes, you can design a protected array type that prevents this sort of nonsense. Chapter 13,
“Class Inheritance,” provides an example. For now, you should build the protection into your
programs when you need it. For example, the loop in Listing 5.10 should include a test that
keeps it from going past the last member. That’s true even for the “good” loop. If all the scores
were 20s, the “good” loop, too, would exceed the array bounds. In short, the loop needs to test
the values of the array and the array index. Chapter 6 shows how to use logical operators to
combine two such tests into a single condition.

Comparing C-Style Strings
Suppose you want to see if a string in a character array is the word mate. If word is the array
name, the following test might not do what you think it should do:

word == "mate"

Remember that the name of an array is a synonym for its address. Similarly, a quoted string
constant is a synonym for its address. Thus, the preceding relational expression doesn't test
whether the strings are the same; it checks whether they are stored at the same address. The
answer to that is no, even if the two strings have the same characters.

Because C++ handles C-style strings as addresses, you get little satisfaction if you try to use the
relational operators to compare strings. Instead, you can go to the C-style string library and
use the stremp () function to compare strings. This function takes two string addresses as
arguments. That means the arguments can be pointers, string constants, or character array
names. If the two strings are identical, the function returns the value 0. If the first string pre-
cedes the second alphabetically, stremp () returns a negative value, and if the first string fol-
lows the second alphabetically, stremp () returns a positive value. Actually, “in the system
collating sequence” is more accurate than “alphabetically.” This means that characters are

202

C++ PRIMER PLUS, FIFTH EDITION

compared according to the system code for characters. For example, in ASCII code, uppercase
letters have smaller codes than the lowercase letters, so uppercase precedes lowercase in the
collating sequence. Therefore, the string "Zoo" precedes the string "aviary". The fact that
comparisons are based on code values also means that uppercase and lowercase letters differ,
so the string "F00" is different from the string "foo".

In some languages, such as BASIC and standard Pascal, strings stored in differently sized arrays
are necessarily unequal to each other. But C-style strings are defined by the terminating null
character, not by the size of the containing array. This means that two strings can be identical
even if they are contained in differently sized arrays:

char big[80] = "Daffy"; // 5 letters plus \0
char little[6] = "Daffy"; // 5 letters plus \0

By the way, although you can't use relational operators to compare strings, you can use them to
compare characters because characters are actually integer types. So this:

for (ch = 'a'; ch <= 'z'; ch++)
cout << ch;

is valid code, at least for the ASCII character set, for displaying the characters of the alphabet.

The program in Listing 5.11 uses strcmp () in the test condition of a for loop. The program
displays a word, changes its first letter, displays the word again, and keeps going until
stremp () determines that word is the same as the string "mate". Note that the listing includes
the cstring file because it provides a function prototype for stremp().

LISTING 5.11 compstri.cpp

// compstri.cpp -- comparing strings using arrays
#include <iostream>
#include <cstring> // prototype for strcmp()
int main()
{
using namespace std;
char word[5] = "?ate";
for (char ch = 'a'; strcmp(word, "mate"); ch++)
{
cout << word << endl;
word[@] = ch;
}
cout << "After loop ends, word is " << word << endl;
return 0;

@ Compatibility Note

You might have to use string.h instead of cstring. Also, the code in Listing 5.11 assumes that the
system uses the ASCII character code set. In that set, the codes for the letters a through z are con-
secutive, and the code for the ? character immediately precedes the code for a.

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 203

Here is the output for the program in Listing 5.11:

?ate
aate
bate
cate
date
eate
fate
gate
hate
iate
jate
kate
late
After loop ends, word is mate

Program Notes

The program in Listing 5.11 has some interesting points. One, of course, is the test. You want
the loop to continue as long as word is not mate. That is, you want the test to continue as long
as stremp () says the two strings are not the same. The most obvious test for that is this:

strcmp(word, "mate") != 0 // strings are not the same

This statement has the value 1 (true) if the strings are unequal and the value 0 (false) if they
are equal. But what about strcmp(word, "mate") by itself? It has a nonzero value (true) if
the strings are unequal and the value 0 (false) if the strings are equal. In essence, the function
returns true if the strings are different and false if they are the same. You can use just the
function instead of the whole relational expression. This produces the same behavior and
involves less typing. Also, it’s the way C and C++ programmers have traditionally used
strcmp().

Remember

You can use stremp () to test C-style strings for equality or order. The expression
stremp(stri,str2) == 0

is true if str1 and str2 are identical; the expressions
strcmp(strt1, str2) =0

and

strcmp(str1, str2)

are true if str1 and str2 are not identical; the expression
strcemp(stri,str2) < 0

is true if str1 precedes str2; and the expression

strcmp(str1, str2) > 0

is true if str1 follows str2. Thus, the stremp () function can play the role of the ==, 1=, <, and >
operators, depending on how you set up a test condition.

204

C++ PRIMER PLUS, FIFTH EDITION

Next, compstrl.cpp uses the increment operator to march the variable ch through the
alphabet:

ch++

You can use the increment and decrement operators with character variables because type
char really is an integer type, so the operation actually changes the integer code stored in the
variable. Also, note that using an array index makes it simple to change individual characters
in a string:

word[@] = ch;

Comparing string Class Strings

Life is a bit simpler if you use string class strings instead of C-style strings because the class
design allows you to use relational operators to make the comparisons. This is possible
because you define class functions that “overload”, or redefine, operators. Chapter 12, “Classes
and Dynamic Memory Allocation,” discusses how to incorporate this feature into class designs,
but, from a practical standpoint, all you need to know now is that you can use the relational
operators with string class objects. Listing 5.12 revises Listing 5.11 to use a string object
instead of an array of char.

LISTING 5.12 compstr2.cpp

// compstr2.cpp -- comparing strings using arrays
#include <iostream>
#include <string> // string class
int main()
{
using namespace std;
string word = "?ate";
for (char ch = 'a'; word != "mate"; ch++)
{
cout << word << endl;
word[@] = ch;
}
cout << "After loop ends, word is " << word << endl;
return 0;

}

The output from the program in Listing 5.12 is the same as that for the program in
Listing 5.11.

Program Notes

In Listing 5.12, the test condition

word != "mate"

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 205

uses a relational operator with a string object on the left and a C-style string on the right. The
way the string class overloads the != operator allows you to use it as long as at least one of
the operands is a string object; the remaining operand can be either a string object or a C-
style string.

The string class design allows you to use a string object as a single entity, as in the relational
test expression, or as an aggregate object for which you can use array notation to extract indi-
vidual characters.

Finally, unlike most of the for loops you have seen to this point, the last two loops aren’t
counting loops. That is, they don’t execute a block of statements a specified number of times.
Instead, each of these loops watches for a particular circumstance (word being "mate") to sig-
nal that it’s time to stop. More typically, C++ programs use while loops for this second kind of
test, so let’s examine that form next.

The while Loop

The while loop is a for loop stripped of the initialization and update parts; it has just a test
condition and a body:

while (test-condition)
body

First, a program evaluates the parenthesized test-condition expression. If the expression
evaluates to true, the program executes the statement(s) in the body. As with a for loop, the
body consists of a single statement or a block defined by paired braces. After it finishes with
the body, the program returns to the test condition and reevaluates it. If the condition is
nonzero, the program executes the body again. This cycle of testing and execution continues
until the test condition evaluates to false. (See Figure 5.3.) Clearly, if you want the loop to
terminate eventually, something within the loop body must do something to affect the test-
condition expression. For example, the loop can increment a variable used in the test condi-
tion or read a new value from keyboard input. Like the for loop, the while loop is an
entry-condition loop. Thus, if test-condition evaluates to false at the beginning, the pro-
gram never executes the body of the loop.

Listing 5.13 puts a while loop to work. The loop cycles through each character in a string and
displays the character and its ASCII code. The loop quits when it reaches the null character.
This technique of stepping through a string character-by-character until reaching the null
character is a standard C++ method for processing strings. Because a string contains its own
termination marker, programs often don't need explicit information about how long a string is.

206 C++ PRIMER PLUS, FIFTH EDITION

FIGURE 5.3 statement1
The structure of while [while](test_expr)
100pS statement2

' statement3
statementi

statement2

while loop

statement3

LISTING 5.13 while.cpp

// while.cpp -- introducing the while loop
#include <iostream>
const int ArSize = 20;
int main()
{
using namespace std;
char name[ArSize];

cout << "Your first name, please: ";
cin >> name;
cout << "Here is your name, verticalized and ASCIIized:\n";

int 1 = 0; // start at beginning of string
while (name[i] != "\0Q") // process to end of string
{
cout << name[i] << ": " << int(name[i]) << endl;
i++; // don't forget this step
}
return 0;

}

Here is a sample run of the program in Listing 5.13:

Your first name, please: Muffy

Here is your name, verticalized and ASCIIized:
M: 77

u: 117
f: 102
f: 102
y: 121

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 207

(No, verticalized and ASCllized are not real words or even good would-be words. But they do
add an endearing technoid tone to the output.)

Program Notes
The while condition in Listing 5.13 looks like this:

while (name[i] != '"\0')

It tests whether a particular character in the array is the null character. For this test to eventu-
ally succeed, the loop body needs to change the value of i. It does so by incrementing i at the
end of the loop body. Omitting this step keeps the loop stuck on the same array element,
printing the character and its code until you manage to kill the program. Getting such an infi-
nite loop is one of the most common problems with loops. Often you can cause it when you
forget to update some value within the loop body.

You can rewrite the while line this way:

while (name[i])

With this change, the program works just as it did before. That’s because when name[i] is an
ordinary character, its value is the character code, which is nonzero, or true. But when
name[i] is the null character, its character-code value is 0, or false. This notation is more
concise (and more commonly used) but less clear than what Listing 5.13 uses. Dumb compil-

ers might produce faster code for the second version, but smart compilers produce the same
code for both.

To print the ASCII code for a character, the program uses a type cast to convert name[i] to an
integer type. Then cout prints the value as an integer rather than interpret it as a character
code.

Unlike a C-style string, a string class object doesn't use a null character to identify the end of
a string, so you can't convert Listing 5.13 to a string class version merely by replacing the
array of char with a string object. Chapter 16 discusses techniques you can use with a
string object to identify the last character.

for Versus while
In C++ the for and while loops are essentially equivalent. For example, this for loop:

for (init-expression; test-expression; update-expression)

{
}

could be rewritten this way:

statement (s)

init-expression;
while (test-expression)
{
statement(s)
update-expression;

208

C++ PRIMER PLUS, FIFTH EDITION

Similarly, this while loop:

while (test-expression)
body

could be rewritten this way:

for (;test-expression;)
body

This for loop requires three expressions (or, more technically, one statement followed by two
expressions), but they can be empty expressions (or statements). Only the two semicolons are
mandatory. Incidentally, a missing test expression in a for loop is construed as true, so this
loop runs forever:
for (5 5)

body
Because for loops and while loops are nearly equivalent, the one you use is a matter of style.
(There is a slight difference if the body includes a continue statement, which is discussed in
Chapter 6.) Typically, programmers use for loops for counting loops because the for loop for-
mat enables you to place all the relevant information—initial value, terminating value, and
method of updating the counter—in one place. Programmers most often use while loops
when they don’t know in advance precisely how many times a loop will execute.

@ Tip

=
Keep in mind the following guidelines when you design a loop:

e |dentify the condition that terminates loop execution.
e |Initialize that condition before the first test.
e Update the condition in each loop cycle, before the condition is tested again.

One nice thing about for loops is that their structure provides a place to implement these
three guidelines, thus helping you to remember to do so.

Bad Punctuation

Both for loops and while loops have bodies that consist of a single statement following the paren-
thesized expressions. As you've seen, that single statement can be a block, which can contain several
statements. Keep in mind that braces, not indentation, define a block. Consider the following loop,

for example:

i=0;

while (name[i] != '\0')
cout << name[i] << endl;
i++;

H

cout << "Done\n";

The indentation tells you that the program author intended the i++; statement to be part of the
loop body. The absence of braces, however, tells the compiler that the body consists solely of the

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 209

first cout statement. Thus, the loop keeps printing the first character of the array indefinitely. The
program never reaches the i++; statement because it is outside the loop.

The following example shows another potential pitfall:

i=0;
while (name[i] != "\0Q"); // problem semicolon
{
cout << name[i] << endl;
i++;
}

cout << "Done\n";

This time the code gets the braces right, but it also inserts an extra semicolon. Remember, a semi-
colon terminates a statement, so this semicolon terminates the while loop. In other words, the body
of the loop is a null statement—that is, nothing followed by a semicolon. All the material in braces
now comes after the loop and is never reached. Instead, the loop cycles, doing nothing forever.
Beware the straggling semicolon.

Just a Moment—DBuilding a Time-Delay Loop

Sometimes it’s useful to build a time delay into a program. For example, you might have
encountered programs that flash a message onscreen and then go on to something else before
you can read the message. You end up being afraid that you've missed irretrievable information
of vital importance. It would be much nicer if the program paused 5 seconds before moving
on. The while loop is handy for producing this effect. A technique from the early days of per-
sonal computers was to make the computer count for a while to use up time:
long wait = 0;
while (wait < 10000)

wait++; // counting silently

The problem with this approach is that you have to change the counting limit when you
change computer processor speed. Several games written for the original IBM PC, for example,
became unmanageably fast when run on its faster successors. A better approach is to let the
system clock do the timing for you.

The ANSI C and the C++ libraries have a function to help you do this. The function is called
clock (), and it returns the system time elapsed since a program started execution. There are a
couple complications, though. First, clock () doesn’t necessarily return the time in seconds.
Second, the function’s return type might be long on some systems, unsigned long on others,
and perhaps some other type on others.

But the ctime header file (time.h on less current implementations) provides solutions to these
problems. First, it defines a symbolic constant, CLOCKS_PER_SEC, that equals the number of
system time units per second. So dividing the system time by this value yields seconds. Or you
can multiply seconds by CLOCKS_PER_SEC to get time in the system units. Second, ctime estab-
lishes clock_t as an alias for the clock () return type. (See the sidebar “Type Aliases,” later in
this chapter.) This means you can declare a variable as type clock_t, and the compiler con-
verts it to long or unsigned int or whatever is the proper type for your system.

210

C++ PRIMER PLUS, FIFTH EDITION

N

Compatibility Note

Systems that haven't added the ctime header file can use time.h instead. Some C++ implementa-
tions might have problems with waiting.cpp if the implementation’s library component is not fully
ANSI C compliant. That's because the clock () function is an ANSI addition to the traditional C
library. Also, some premature implementations of ANSI C use CLK_TCK or TCK_CLK instead of the
longer CLOCKS_PER_SEC. Some older versions of C++ don’t recognize any of these defined con-
stants. Some environments have problems with the alarm character \a and coordinating the display
with the time delay.

Listing 5.14 shows how to use clock() and the ctime header to create a time-delay loop.

LISTING 5.14

waiting.cpp

/] waiting.cpp -- using clock() in a time-delay loop
#include <iostream>

#include <ctime> // describes clock() function, clock_t type
int main()

{

using namespace std;

cout << "Enter the delay time, in seconds: ";

float secs;

cin >> secs;

clock_t delay = secs * CLOCKS_PER_SEC; // convert to clock ticks
cout << "starting\a\n";

clock_t start = clock();

while (clock() - start < delay) // wait until time elapses

5 // note the semicolon

cout << "done \a\n";
return 0;

}

By calculating the delay time in system units instead of in seconds, the program in Listing 5.14
avoids having to convert system time to seconds in each loop cycle.

Type Aliases
C++ has two ways to establish a new name as an alias for a type. One is to use the preprocessor:
#define BYTE char // preprocessor replaces BYTE with char
The preprocessor then replaces all occurrences of BYTE with char when you compile a program, thus
making BYTE an alias for char.

The second method is to use the C++ (and C) keyword typedef to create an alias. For example, to
make byte an alias for char, you use this:

typedef char byte; // makes byte an alias for char

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 211

Here's the general form:
typedef typeName aliasName;

In other words, if you want aliasName to be an alias for a particular type, you declare aliasName as
if it were a variable of that type and then prefix the declaration with the typedef keyword. For
example, to make byte_pointer an alias for pointer-to-char, you could declare byte_pointer as a
pointer-to-char and then stick typedef in front:

typedef char * byte pointer; // pointer to char type

You could try something similar with #define, but that wouldn’t work if you declared a list of vari-
ables. For example, consider the following:

#define FLOAT_POINTER float *

FLOAT_POINTER pa, pb;

Preprocessor substitution converts the declaration to this:

float * pa, pb; // pa a pointer to float, pb just a float

The typedef approach doesn’t have that problem. Its ability to handle more complex type aliases
makes using typedef a better choice than #define—and sometimes it is the only choice.

Notice that typedef doesn't create a new type. It just creates a new name for an old type. If you
make word an alias for int, cout treats a type word value as the int it really is.

The do while Loop

You've now seen the for loop and the while loop. The third C++ loop is the do while. It5s dif-
ferent from the other two because it's an exit-condition loop. That means this devil-may-care
loop first executes the body of the loop and only then evaluates the test expression to see
whether it should continue looping. If the condition evaluates to false, the loop terminates;
otherwise, a new cycle of execution and testing begins. Such a loop always executes at least
once because its program flow must pass through the body of the loop before reaching the
test. Here’s the syntax for the do while loop:

do
body
while (test-expression);

The body portion can be a single statement or a brace-delimited statement block. Figure 5.4
summarizes the program flow for do while loops.

Usually, an entry-condition loop is a better choice than an exit-condition loop because the
entry-condition loop checks before looping. For example, suppose Listing 5.13 used do while
instead of while. In that case, the loop would print the null character and its code before find-
ing that it had already reached the end of the string. But sometimes a do while test does make
sense. For example, if you're requesting user input, the program has to obtain the input before
testing it. Listing 5.15 shows how to use do while in such a situation.

212 C++ PRIMER PLUS, FIFTH EDITION

FIGURE 5.4 statement1
The structure of do
while 100pS statement2
(test_expr);
statement3
statement1
P
statement2

do while loop

statement3

LISTING 5.15 dowhile.cpp

// dowhile.cpp -- exit-condition loop
#include <iostream>
int main()
{
using namespace std;
int n;

cout << "Enter numbers in the range 1-10 to find ";
cout << "my favorite number\n";
do
{
cin >> n; /| execute body
} while (n != 7); /] then test
cout << "Yes, 7 is my favorite.\n" ;
return 0;

}

Here’s a sample run of the program in Listing 5.15:

Enter numbers in the range 1-10 to find my favorite number
9

4

7

Yes, 7 is my favorite.

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS

(@/

Real-World Note: Strange for loops
It's not terribly common, but you may occasionally see code that resembles the following:
for(;;) // sometimes called a "forever loop"

{

I++;

// do something ...

if (30 >= I) break; // if statement and break (Chapter 6)
}

or another variation:
for(;;I++)

if (30 >= I) break;
// do something ...

}

The code relies on the fact that an empty test condition in a for loop is treated as being true.
Neither of these examples is easy to read, and neither should be used as a general model of writing
a loop. The functionality of the first example can be more clearly expressed in a do while loop:

do {
I++;
// do something;
while (30 < I);
Similarly, the second example can be expressed more clearly as a while loop:
while (I < 30)
{

// do something
I++;

}

In general, writing clear, easily understood code is a more useful goal than demonstrating the ability
to exploit obscure features of the language.

Loops and Text Input

Now that you've seen how loops work, let’s look at one of the most common and important
tasks assigned to loops: reading text character-by-character from a file or from the keyboard.
For example, you might want to write a program that counts the number of characters, lines,
and words in the input. Traditionally, C++, like C, uses the while loop for this sort of task.
We'll next investigate how that is done. If you already know C, don’t skim through the follow-
ing sections too fast. Although the C++ while loop is the same as Cs, C++' /O facilities are
different. This can give the C++ loop a somewhat different look from the C loop. In fact, the
cin object supports three distinct modes of single-character input, each with a different user
interface. Let’s look at how to use these choices with while loops.

213

214 C++ PRIMER PLUS, FIFTH EDITION

Using Unadorned cin for Input

If a program is going to use a loop to read text input from the keyboard, it has to have some
way of knowing when to stop. How can it know when to stop? One way is to choose some
special character, sometimes called a sentinel character, to act as a stop sign. For example,
Listing 5.16 stops reading input when the program encounters a # character. The program
counts the number of characters it reads and the echoes them. That is, it redisplays the charac-
ters that have been read. (Pressing a keyboard key doesn’t automatically place a character
onscreen; programs have to do that drudge work by echoing the input character. Typically, the
operating system handles that task. In this case, both the operating system and the test pro-
gram echo the input.) When it is finished, the program reports the total number of characters
processed. Listing 5.16 shows the program.

LISTING 5.16 textint.cpp

// textini.cpp -- reading chars with a while loop
#include <iostream>
int main()
{
using namespace std;
char ch;
int count = 0; // use basic input
cout << "Enter characters; enter # to quit:\n";
cin >> ch; /] get a character
while (ch != '#") /] test the character
{
cout << ch; // echo the character
++count; // count the character
cin >> ch; // get the next character
}
cout << endl << count << " characters read\n";
return 0;

}

Here’s a sample run of the program in Listing 5.16:

Enter characters; enter # to quit:
see ken run#really fast

seekenrun

9 characters read

Apparently, Ken runs so fast that he obliterates space itself—or at least the space characters in
the input.

Program Notes

Note the structure of the program in Listing 5.16. The program reads the first input character
before it reaches the loop. That way, the first character can be tested when the program reaches
the loop statement. This is important because the first character might be #. Because
textint.cpp uses an entry-condition loop, the program correctly skips the entire loop in that
case. And because the variable count was previously set to @, count has the correct value.

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS

Suppose the first character read is not a #. In that case, the program enters the loop, displays
the character, increments the count, and reads the next character. This last step is vital.
Without it, the loop repeatedly processes the first input character forever. With the last step,
the program advances to the next character.

Note that the loop design follows the guidelines mentioned earlier. The condition that termi-
nates the loop is if the last character read is #. That condition is initialized by reading a charac-
ter before the loop starts. The condition is updated by reading a new character at the end of
the loop.

This all sounds reasonable. So why does the program omit the spaces on output? Blame cin.
When reading type char values, just as when reading other basic types, cin skips over spaces
and newline characters. The spaces in the input are not echoed, so they are not counted.

To further complicate things, the input to cin is buffered. That means the characters you type
don’t get sent to the program until you press Enter. This is why you are able to type characters
after the # when running the program in Listing 5.16. After you press Enter, the whole
sequence of characters is sent to the program, but the program quits processing the input after
it reaches the # character.

cin.get(char) to the Rescue

Usually, programs that read input character-by-character need to examine every character,
including spaces, tabs, and newlines. The istream class (defined in iostream), to which cin
belongs, includes member functions that meet this need. In particular, the member function
cin.get(ch) reads the next character, even if it is a space, from the input and assigns it to the
variable ch. By replacing cin>>ch with this function call, you can fix Listing 5.16. Listing 5.17
shows the result.

LISTING 5.17 textin2.cpp

/] textin2.cpp -- using cin.get(char)
#include <iostream>

int main()

{

using namespace std;
char ch;
int count = 0;

cout << "Enter characters; enter # to quit:\n";

cin.get(ch); /| use the cin.get(ch) function
while (ch != "#')
{

cout << ch;

++count;

cin.get(ch); // use it again
}
cout << endl << count << " characters read\n";
return 0;

216

C++ PRIMER PLUS, FIFTH EDITION

Here is a sample run of the program in Listing 5.17:

Did you use a #2 pencil?
Did you use a
14 characters read

Now the program echoes and counts every character, including the spaces. Input is still
buffered, so it is still possible to type more input than what eventually reaches the program.

If you are familiar with C, this program may strike you as terribly wrong. The cin.get(ch)
call places a value in the ch variable, which means it alters the value of the variable. In C you
must pass the address of a variable to a function if you want to change the value of that vari-
able. But the call to cin.get() in Listing 5.17 passes ch, not &ch. In C, code like this won't
work. In C++ it can work, provided that the function declares the argument as a reference.
This is a feature type that is new to C++. The iostream header file declares the argument to
cin.get(ch) as a reference type, so this function can alter the value of its argument. You'll
learn the details in Chapter 8, “Adventures in Functions.” Meanwhile, the C mavens among
you can relax; ordinarily, argument passing in C++ works just as it does in C. For
cin.get(ch), however, it doesn'.

Which cin.get()?

Listing 4.5 in Chapter 4 uses this code:

char name[ArSize];

cout << "Enter your name:\n";
cin.get(name, ArSize).get();

The last line is equivalent to two consecutive function calls:

cin.get(name, ArSize);
cin.get();

One version of cin.get () takes two arguments: the array name, which is the address of the
string (technically, type char*), and ArSize, which is an integer of type int. (Recall that the
name of an array is the address of its first element, so the name of a character array is type
char*.) Then, the program uses cin.get () with no arguments. And, most recently, we've used
cin.get() this way:

char ch;
cin.get(ch);

This time cin.get() has one argument, and it is type char.

Once again it is time for those of you familiar with C to get excited or confused. In C if a func-
tion takes a pointer-to-char and an int as arguments, you can't successfully use the same
function with a single argument of a different type. But you can do so in C++ because the lan-
guage supports an OOP feature called function overloading. Function overloading allows you
to create different functions that have the same name, provided that they have different argu-
ment lists. If, for example, you use cin.get(name, ArSize) in C++, the compiler finds the
version of cin.get() that uses a char* and an int as arguments. But if you use cin.get (ch),

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS

the compiler fetches the version that uses a single type char argument. And if the code pro-
vides no arguments, the compiler uses the version of cin.get () that takes no arguments.
Function overloading enables you to use the same name for related functions that perform the
same basic task in different ways or for different types. This is another topic awaiting you in
Chapter 8. Meanwhile, you can get accustomed to function overloading by using the get ()
examples that come with the istream class. To distinguish between the different function ver-
sions, we'll include the argument list when referring to them. Thus, cin.get () means the ver-
sion that takes no arguments, and cin.get (char) means the version that takes one argument.

The End-of-File Condition

As Listing 5.17 shows, using a symbol such as # to signal the end of input is not always satis-
factory because such a symbol might be part of legitimate input. The same is true of other
arbitrarily chosen symbols, such as @ and %. If the input comes from a file, you can employ a
much more powerful technique—detecting the end-of-file (EOF). C++ input facilities cooper-
ate with the operating system to detect when input reaches the end of a file and report that
information back to a program.

At first glance, reading information from files seems to have little to do with cin and keyboard
input, but there are two connections. First, many operating systems, including Unix and MS-
DOS, support redirection, which enables you to substitute a file for keyboard input. For exam-
ple, suppose that in MS-DOS you have an executable program called gofish.exe and a text
file called fishtale. In that case, you can give this command line at the DOS prompt:

gofish <fishtale

This causes the program to take input from the fishtale file instead of from the keyboard.
The < symbol is the redirection operator for both Unix and DOS.

Second, many operating systems allow you to simulate the EOF condition from the keyboard.
In Unix you do so by pressing Ctrl+D at the beginning of a line. In DOS, you press Ctrl+Z and

then press Enter anywhere on the line. Some implementations of C++ support similar behavior

even though the underlying operating system doesn’t. The EOF concept for keyboard entry is
actually a legacy of command-line environments. However, Symantec C++ for the Mac imitates
Unix and recognizes Ctrl+D as a simulated EOF Metrowerks Codewarrior recognizes Ctrl+Z in
the Macintosh and Windows environments. Microsoft Visual C++ 7.0, Borland C++ 5.5, and
GNU C++ for the PC recognize Ctrl+Z when it5s the first character on a line, but they require a
subsequent Enter. In short, many PC programming environment recognize Ctrl+Z as a simu-
lated EOF, but the exact details (anywhere on a line versus first character on a line, Enter key
required or not required) vary.

If your programming environment can test for the EOF, you can use a program similar to
Listing 5.17 with redirected files and you can use it for keyboard input in which you simulate
the EOE That sounds useful, so let’s see how it’s done.

When cin detects the EOF, it sets two bits (the eofbit and the failbit) to 1. You can use a mem-
ber function named eof () to see whether the eofbit has been set; the call cin.eof () returns
the bool value true if the EOF has been detected and false otherwise. Similarly, the fail()

217

218

C++ PRIMER PLUS, FIFTH EDITION

member function returns true if either the eofbit or the failbit has been set to 1 and false
otherwise. Note that the eof () and fail() methods report the result of the most recent
attempt to read; that is, they report on the past rather than look ahead. So a cin.eof () or
cin.fail() test should always follow an attempt to read. The design of Listing 5.18 reflects
this fact. It uses fail() instead of eof () because the former method appears to work with a
broader range of implementations.

® Compatibility Note

Some systems do not support simulated EOF from the keyboard. Other systems support it imper-
fectly. If you have been using cin.get () to freeze the screen until you can read it, that won't work
here because detecting the EOF turns off further attempts to read input. However, you can use a
timing loop like that in Listing 5.14 to keep the screen visible for a while.

LISTING 5.18 textin3.cpp

// textin3.cpp -- reading chars to end of file
#include <iostream>
int main()
{
using namespace std;
char ch;
int count = 0;
cin.get(ch); // attempt to read a char
while (cin.fail() == false) // test for EOF
{
cout << ch; // echo character
++count;
cin.get(ch); // attempt to read another char
}
cout << endl << count << " characters read\n";
return 0;

}

Here is sample output from the program in Listing 5.18:

The green bird sings in the winter.<ENTER>
The green bird sings in the winter.

Yes, but the crow flies in the dawn.<ENTER>
Yes, but the crow flies in the dawn.
<CTRL><Z>

73 characters read

Because I ran the program on a Windows XP system, I pressed Ctrl+Z and then Enter to simu-
late the EOF condition. Unix and Linux users would press Ctrl+D instead.

By using redirection, you can use the program in Listing 5.18 to display a text file and report
how many characters it has. This time, we have a program read, echo, and count a two-line file
on a Unix system (the $ is a Unix prompt):

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 219

$ textin3 < stuff

I am a Unix file. I am proud
to be a Unix file.

49 characters read

$

EOF Ends Input

Remember that when a cin method detects the EOF, it sets a flag in the cin object, indicating
the EOF condition. When this flag is set, cin does not read anymore input, and further calls to
cin have no effect. For file input, this makes sense because you shouldn't read past the end of
a file. For keyboard input, however, you might use a simulated EOF to terminate a loop but
then want to read more input later. The cin.clear () method clears the EOF flag and lets
input proceed again. Chapter 17, “Input, Output, and Files,” discusses this further. Keep in
mind, however, that in some systems, typing Ctrl+Z effectively terminates both input and out-
put beyond the powers of cin.clear() to restore them.

Common Idioms for Character Input

The following is the essential design of a loop intended to read text a character at a time

until EOF:
cin.get(ch); // attempt to read a char
while (cin.fail() == false) // test for EOF
{
e /] do stuff
cin.get(ch); // attempt to read another char
}

There are some shortcuts you can take with this code. Chapter 6 introduces the ! operator,
which toggles true to false and vice versa. You can use it to rewrite the while test to look
like this:

while (!cin.fail()) // while input has not failed

The return value for the cin.get(char) method is cin, an object. However, the istream class
provides a function that can convert an istream object such as cin to a bool value; this con-
version function is called when cin occurs in a location where a bool is expected, such as in
the test condition of a while loop. Furthermore, the bool value for the conversion is true if
the last attempted read was successful and false otherwise. This means you can rewrite the
while test to look like this:

while (cin) // while input is successful

This is a bit more general than using !cin.fail() or !cin.eof () because it detects other pos-
sible causes of failure, such as disk failure.

Finally, because the return value of cin.get(char) is cin, you can condense the loop to this
format:

while (cin.get(ch)) // while input is successful

{
}

// do stuff

220

C++ PRIMER PLUS, FIFTH EDITION

Here, cin.get(char) is called once in the test condition instead of twice—once before the
loop and once at the end of the loop. To evaluate the loop test, the program first has to execute
the call to cin.get(ch), which, if successful, places a value into ch. Then the program obtains
the return value from the function call, which is cin. Then it applies the bool conversion to
cin, which yields true if input worked and false otherwise. The three guidelines (identifying
the termination condition, initializing the condition, and updating the condition) are all com-
pressed into one loop test condition.

Yet Another Version of cin.get ()

Nostalgic C users might yearn for Cs character I/O functions, getchar () and putchar(). They
are available in C++ if you want them. You just use the stdio.h header file as you would in C
(or use the more current cstdio). Or you can use member functions from the istream and
ostream classes that work in much the same way. Let’s look at that approach next.

g Compatibility Note

Some older C++ implementations don’t support the cin.get () member function (no arguments)
discussed here.

The cin.get () member function with no arguments returns the next character from the
input. That is, you use it in this way:

ch = cin.get();

(Recall that cin.get(ch) returns an object, not the character read.) This function works much
the same as Cs getchar (), returning the character code as a type int value. Similarly, you can
use the cout.put() function (see Chapter 3, “Dealing with Data”) to display the character:

cout.put(ch);

It works much like C5s putchar(), except that its argument should be type char instead of
type int.

@ Compatibility Note

Originally, the put () member had the single prototype put (char). You could pass to it an int argu-
ment, which would then be type cast to char. The Standard also calls for a single prototype.
However, many current C++ implementations provide three prototypes: put (char), put(signed
char), and put (unsigned char). Using put () with an int argument in these implementations
generates an error message because there is more than one choice for converting the int. An
explicit type cast, such as cin.put(char(ch)), works for int types.

To use cin.get () successfully, you need to know how it handles the EOF condition. When
the function reaches the EOF, there are no more characters to be returned. Instead, cin.get ()
returns a special value, represented by the symbolic constant EOF. This constant is defined in
the iostream header file. The EOF value must be different from any valid character value so

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 221

that the program won't confuse EOF with a regular character. Typically, EOF is defined as the
value -1 because no character has an ASCII code of -1, but you don’t need to know the actual
value. You can just use EOF in a program. For example, the heart of Listing 5.18 looks like this:
char ch;

cin.get(ch);
while (cin.fail() == false) // test for EOF

{
cout << ch;
++count;
cin.get(ch);
}

You can use int ch, replace cin.get(char) with cin.get(), replace cout with cout.put(),
and replace the cin.fail() test with a test for EOF:
int ch; /// for compatibility with EOF value

ch = cin.get();
while (ch != EOF)

{
cout.put(ch); // cout.put(char(ch)) for some implementations
++count;
ch = cin.get();

}

If ch is a character, the loop displays it. If ch is EOF, the loop terminates.

Tip

You should realize that EOF does not represent a character in the input. Instead, it's a signal that
there are no more characters.

There’s a subtle but important point about using cin.get () beyond the changes made so far.
Because EOF represents a value outside the valid character codes, it’s possible that it might not
be compatible with the char type. For example, on some systems type char is unsigned, so a
char variable could never have the usual EOF value of -1. For this reason, if you use
cin.get() (with no argument) and test for EOF, you must assign the return value to type int
instead of to type char. Also, if you make ch type int instead of type char, you might have to
do a type cast to char when displaying ch.

Listing 5.19 incorporates the cin.get () approach into a new version of Listing 5.18. It also
condenses the code by combining character input with the while loop test.

LISTING 5.19 textin4.cpp

// textind.cpp -- reading chars with cin.get()
#include <iostream>
int main(void)

{

222

C++ PRIMER PLUS, FIFTH EDITION

LISTING 5.19 Continued

using namespace std;
int ch; /] should be int, not char
int count = 0;

while ((ch = cin.get()) != EOF) // test for end-of-file

{
cout.put(char(ch));
++count;

}
cout << endl << count << " characters read\n";
return 0;

® Compatibility Note

Some systems either do not support simulated EOF from the keyboard or support it imperfectly, and
that may prevent the example in Listing 5.19 from running as described. If you have been using
cin.get () to freeze the screen until you can read it, that won’t work here because detecting the
EOF turns off further attempts to read input. However, you can use a timing loop like that in Listing
5.14 to keep the screen visible for a while.

Here’s a sample run of the program in Listing 5.19:

The sullen mackerel sulks in the shadowy shallows.<ENTER>
The sullen mackerel sulks in the shadowy shallows.

Yes, but the blue bird of happiness harbors secrets.<ENTER>
Yes, but the blue bird of happiness harbors secrets.

~Z

104 characters read

Let’s analyze the loop condition:
while ((ch = cin.get()) != EOF)

The parentheses that enclose the subexpression ch = cin.get() cause the program to evalu-
ate that expression first. To do the evaluation, the program first has to call the cin.get() func-
tion. Next, it assigns the function return value to ch. Because the value of an assignment
statement is the value of the left operand, the whole subexpression reduces to the value of ch.
If this value is EOF, the loop terminates; otherwise, it continues. The test condition needs all
the parentheses. Suppose you leave some parentheses out:

while (ch = cin.get() != EOF)

The != operator has higher precedence than =, so first the program compares cin.get()’s
return value to EOF. A comparison produces a false or true result; that bool value is con-
verted to @ or 1, and that’s the value that gets assigned to ch.

Using cin.get(ch) (with an argument) for input, on the other hand, doesn’t create any type
problems. Remember that the cin.get (char) function doesn’t assign a special value to ch at
the EOF In fact, it doesn't assign anything to ch in that case. ch is never called on to hold a

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS

non-char value. Table 5.3 summarizes the differences between cin.get(char) and
cin.get().

TABLE 5.3 cin.get(ch) Versus cin.get()

Property cin.get(ch) ch=cin.get()

Method for conveying Assign to argument ch Use function return value
input character to assign to ch

Function return value A class istream object (true after Code for character as
for character input bool conversion) type int value

Function return value A class istream object (false after EOF

at EOF bool conversion)

So which should you use, cin.get () or cin.get(char)? The form with the character argu-
ment is integrated more fully into the object approach because its return value is an istream
object. This means, for example, that you can chain uses. For example, the following code
means read the next input character into ch1 and the following input character into ch2:

cin.get(cht).get(ch2);

This works because the function call cin.get(ch1) returns the cin object, which then acts as
the object to which get(ch2) is attached.

Probably the main use for the get () form is to let you make quick-and-dirty conversions from
the getchar() and putchar () functions of stdio.h to the cin.get() and cout.put() meth-
ods of iostream. You just replace one header file with the other and globally replace
getchar() and putchar() with their act-alike method equivalents. (If the old code uses a type
int variable for input, you have to make further adjustments if your implementation has mul-
tiple prototypes for put().)

Nested Loops and Two-Dimensional Arrays

Earlier in this chapter you saw that the for loop is a natural tool for processing arrays. Now
let’s go a step further and look at how a for loop within a for loop (nested loops) serves to
handle two-dimensional arrays.

First, let’s examine what a two-dimensional array is. The arrays used so far in this chapter are
termed one-dimensional arrays because you can visualize each array as a single row of data.
You can visualize a two-dimensional array as being more like a table, having both rows and

columns of data. You can use a two-dimensional array, for example, to represent quarterly sales

figures for six separate districts, with one row of data for each district. Or you can use a two-
dimensional array to represent the position of RoboDork on a computerized game board.

223

224

An array of arrays.

C++ PRIMER PLUS, FIFTH EDITION

C++ doesn't provide a special two-dimensional array type. Instead, you create an array for
which each element is itself an array. For example, suppose you want to store maximum tem-
perature data for five cities over a 4-year period. In that case, you can declare an array as fol-
lows:
int maxtemps[4][5];
This declaration means that maxtemps is an array with four elements. Each of these elements is
an array of five integers. (See Figure 5.5.) You can think of the maxtemps array as representing
four rows of five temperature values each.

FIGURE 5.5 maxtemps is an array of 4 elements

int maxtemps[4][5];

Each element is an array of 5 ints.

The maxtemps array
A
maxtemps[0] maxtemps[1] maxtemps[2] maxtemps[3] 1
A A A A
r AR N AN)

.

maxtemps[@][0] maxtemps[1][0] maxtemps[2][@] maxtemps[3][0]

The expression maxtemps[@] is the first element of the maxtemps array; hence maxtemps[@] is
itself an array of five ints. The first element of the maxtemps[@] array is maxtemps[0]1[0@], and
this element is a single int. Thus, you need to use two subscripts to access the int elements.
You can think of the first subscript as representing the row and the second subscript as repre-
senting the column. (See Figure 5.6.)

FIGURE 5.6 int maxtemps[4][5];
Accessing array elements
with subscripts.

The maxtemps array viewed as a table:

0 1 2 3 4

maxtemps[@] O | maxtemps[0][@] | maxtemps[@][1] |maxtemps[0][2] |maxtemps[0][3] |maxtemps[0][4]

maxtemps[1] 1 | maxtemps[1][0] | maxtemps[1][1] |maxtemps[1][2] |maxtemps[1][3] |maxtemps[1][4]

maxtemps[2] 2 | maxtemps[2][0] | maxtemps[2][1] |maxtemps[2][2] |maxtemps[2][3] |maxtemps[2][4]

maxtemps[3] 3 | maxtemps[3][0] | maxtemps[3][1] |maxtemps[3][2] |maxtemps[3][3] |maxtemps[3][4]

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 225

Suppose you want to print all the array contents. In that case, you can use one for loop to
change rows and a second, nested, for loop to change columns:

for (int row = @; row < 4; row++)

{
for (int col = @; col < 5; ++col)
cout << maxtemps[row][col] << "\t";
cout << endl;
}

For each value of row, the inner for loop cycles through all the col values. This example
prints a tab character (\t in C++ escape character notation) after each value and a newline
character after each complete row.

Initializing a Two-Dimensional Array

When you create a two-dimensional array, you have the option of initializing each element.
The technique is based on that for initializing a one-dimensional array. Remember that you do
this by providing a comma-separated list of values enclosed in braces:

// initializing a one-dimensional array
int btus[5] = { 23, 26, 24, 31, 28};

For a two-dimensional array, each element is itself an array, so you can initialize each element
by using a form like that in the previous code example. Thus, the initialization consists of a
comma-separated series of one-dimensional initializations, all enclosed in a set of braces:

int maxtemps[4][5] = // 2-D array

{
{94, 98, 87, 103, 101}, // values for maxtemps[0Q]
{98, 99, 91, 107, 105}, // values for maxtemps[1]
{93, 91, 90, 101, 104}, // values for maxtemps[2]
{95, 100, 88, 105, 103} // values for maxtemps[3]

b

The term {94, 98, 87, 103, 101} initializes the first row, represented by maxtemps[@]. As a
matter of style, placing each row of data on its own line, if possible, makes the data easier to
read.

Listing 5.20 incorporates an initialized two-dimensional array and a nested loop into a pro-
gram. This time the program reverses the order of the loops, placing the column loop (city
index) on the outside and the row loop (year index) on the inside. Also, it uses a common C++
practice of initializing an array of pointers to a set of string constants. That is, cities is
declared as an array of pointers-to-char. That makes each element, such as cities[0], a
pointer-to-char that can be initialized to the address of a string. The program initializes
cities[0] to the address of the "Gribble City" string, and so on. Thus, this array of point-
ers behaves like an array of strings.

226

C++ PRIMER PLUS, FIFTH EDITION

LISTING 5.20 nested.cpp

/] nested.cpp -- nested loops and 2-D array
#include <iostream>

const int Cities = 5;

const int Years = 4;

int main()
{
using namespace std;
const char * cities[Cities] = // array of pointers
{ // to 5 strings
"Gribble City",
"Gribbletown",

"New Gribble",
"San Gribble",
"Gribble Vista"

b

int maxtemps[Years][Cities] = // 2-D array

{
{95, 99, 86, 100, 104}, // values for maxtemps[0]
{95, 97, 90, 106, 102}, // values for maxtemps[1]
{96, 100, 940, 107, 105}, // values for maxtemps[2]
{97, 102, 89, 108, 104} // values for maxtemps[3]

s

cout << "Maximum temperatures for 2002 - 2005\n\n";
for (int city = 0; city < Cities; ++city)

{
cout << cities[city] << ":\t";
for (int year = 0; year < Years; ++year)
cout << maxtemps[year][city] << "\t";
cout << endl;
}
return 0;

}

Here is the output for the program in Listing 5.20:

Maximum temperatures for 1999 - 2002

Gribble City: 95 95 96 97

Gribbletown: 99 97 100 102
New Gribble: 86 90 940 89
San Gribble: 100 106 107 108

Gribble Vista: 104 102 105 104

Using tabs in the output spaces the data more regularly than using spaces would. However,
different tab settings can cause the output to vary in appearance from one system to another.
Chapter 17 presents more precise, but more complex, methods for formatting output.

More awkwardly, you could use an array of arrays of char instead of an array of pointers for
the string data. The declaration would look like this:

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS

char cities[25][Cities] = // array of 5 arrays of 25 char

{
"Gribble City",
"Gribbletown",
"New Gribble",
"San Gribble",
"Gribble Vista"

H

This approach limits each of the five strings to a maximum of 24 characters. The array of
pointers stores the addresses of the five string literals, but the array of char arrays copies each
of the five string literals to the corresponding five arrays of 25 char. Thus, the array of point-
ers is much more economical in terms of space. However, if you intended to modify any of the
strings, the two-dimensional array would be a better choice. Oddly enough, both choices use
the same initialization list and the same for loop code to display the strings.

Also, you could use an array of string class objects instead of an array of pointers for the
string data. The declaration would look like this:

const string cities[Cities] = // array of 5 strings

{
"Gribble City",

"Gribbletown",

"New Gribble",

"San Gribble",

"Gribble Vista"
b
If you intended for the strings to be modifiable, you would omit the const qualifier. This form
uses the same initializer list and the same for loop display code as the other two forms. If you
want modifiable strings, the automatic sizing feature of the string class makes this approach
more convenient to use than the two-dimensional array approach.

Summary

C++ offers three varieties of loops: for loops, while loops, and do while loops. A loop cycles
through the same set of instructions repetitively, as long as the loop test condition evaluates to
true or nonzero, and the loop terminates execution when the test condition evaluates to
false or zero. The for loop and the while loop are entry-condition loops, meaning that they
examine the test condition before executing the statements in the body of the loop. The do
while loop is an exit-condition loop, meaning that it examines the test condition after execut-
ing the statements in the body of the loop.

The syntax for each loop calls for the loop body to consist of a single statement. However, that
statement can be a compound statement, or block, formed by enclosing several statements
within paired curly braces.

Relational expressions, which compare two values, are often used as loop test conditions.
Relational expressions are formed by using one of the six relational operators: <, <=, ==, >=, >,
or !=. Relational expressions evaluate to the type bool values true and false.

227

228

C++ PRIMER PLUS, FIFTH EDITION

Many programs read text input or text files character-by-character. The istream class provides
several ways to do this. If ch is a type char variable, the statement

cin >> ch;

reads the next input character into ch. However, it skips over spaces, newlines, and tabs. The
member function call

cin.get(ch);

reads the next input character, regardless of its value, and places it in ch. The member function

call cin.get () returns the next input character, including spaces, newlines, and tabs, so it can
be used as follows:

ch = cin.get();
The cin.get(char) member function call reports encountering the EOF condition by return-

ing a value with the bool conversion of false, whereas the cin.get () member function call
reports the EOF by returning the value EOF, which is defined in the iostrean file.

A nested loop is a loop within a loop. Nested loops provide a natural way to process two-
dimensional arrays.

Review Questions

1. Whats the difference between an entry-condition loop and an exit-condition loop?
Which kind is each of the C++ loops?

2. What would the following code fragment print if it were part of a valid program?
int i;
for (1 = 0; 1 < 5; it++)
cout << ij;
cout << endl;

3. What would the following code fragment print if it were part of a valid program?
int j;
for (j = 0; j < 11; j += 3)
cout << j;
cout << endl << j << endl;

4. What would the following code fragment print if it were part of a valid program?
int j = 5;
while (++j < 9)
cout << j++ << endl;

5. What would the following code fragment print if it were part of a valid program?

int k = 8;
do

cout <<" k = " << k << endl;
while (k++ < 5);

Chapter 5 ¢ LOOPS AND RELATIONAL EXPRESSIONS 229

6. Write a for loop that prints the values 1 2 4 8 16 32 64 by increasing the value of a
counting variable by a factor of two in each cycle.

7. How do you make a loop body include more than one statement?

8. Is the following statement valid? If not, why not? If so, what does it do?
int x = (1,024);
What about the following?

int y;
y = 1,024;

9. How does cin>>ch differ from cin.get(ch) and ch=cin.get() in how it views input?

Programming Exercises

1. Write a program that requests the user to enter two integers. The program should then
calculate and report the sum of all the integers between and including the two integers.
At this point, assume that the smaller integer is entered first. For example, if the user
enters 2 and 9, the program should report that the sum of all the integers from 2 through
9is 44.

2. Write a program that asks the user to type in numbers. After each entry, the program
should report the cumulative sum of the entries to date. The program should terminate
when the user enters @.

3. Daphne invests $100 at 10% simple interest. That is, every year, the investment earns
10% of the original investment, or $10 each and every year:

interest = 0.10 x original balance

At the same time, Cleo invests $100 at 5% compound interest. That is, interest is 5% of
the current balance, including previous additions of interest:

interest = 0.05 X current balance

Cleo earns 5% of $100 the first year, giving her $105. The next year she earns 5% of
$105, or $5.25, and so on. Write a program that finds how many years it takes for the
value of Cleo’s investment to exceed the value of Daphne’s investment and then displays
the value of both investments at that time.

4. You sell the book C++ for Fools. Write a program that has you enter a year’s worth of
monthly sales (in terms of number of books, not of money). The program should use a
loop to prompt you by month, using an array of char * (or an array of string objects, if
you prefer) initialized to the month strings and storing the input data in an array of int.
Then, the program should find the sum of the array contents and report the total sales
for the year.

230

C++ PRIMER PLUS, FIFTH EDITION

5. Do Programming Exercise 4, but use a two-dimensional array to store input for 3 years

of monthly sales. Report the total sales for each individual year and for the combined
years.

Design a structure called car that holds the following information about an automobile:
its make, as a string in a character array or in a string object, and the year it was built,
as an integer. Write a program that asks the user how many cars to catalog. The program
should then use new to create a dynamic array of that many car structures. Next, it
should prompt the user to input the make (which might consist of more than one word)
and year information for each structure. Note that this requires some care because it
alternates reading strings with numeric data (see Chapter 4). Finally, it should display
the contents of each structure. A sample run should look something like the following:

How many cars do you wish to catalog? 2
Car #1:

Please enter the make: Hudson Hornet
Please enter the year made: 1952

Car #2:

Please enter the make: Kaiser

Please enter the year made: 1951

Here is your collection:

1952 Hudson Hornet

1951 Kaiser

. Write a program that uses an array of char and a loop to read one word at a time until

the word done is entered. The program should then report the number of words entered
(not counting done). A sample run could look like this:

Enter words (to stop, type the word done):
anteater birthday category dumpster

envy finagle geometry done for sure

You entered a total of 7 words.

You should include the cstring header file and use the stremp() function to make the
comparison test.

. Write a program that matches the description of the program in Programming Exercise

7, but use a string class object instead of an array. Include the string header file and
use a relational operator to make the comparison test.

. Write a program using nested loops that asks the user to enter a value for the number of

rows to display. It should then display that many rows of asterisks, with one asterisk in
the first row, two in the second row, and so on. For each row, the asterisks are preceded
by the number of periods needed to make all the rows display a total number of charac-
ters equal to the number of rows. A sample run would look like this:
Enter number of rows: 5
*

. * %

.. *kk

* k k%

*kkkk

CHAPTER 6

BRANCHING STATEMENTS AND
LOGICAL OPERATORS

In this chapter you’ll learn about the following:

e The if statement e The switch statement
e The if else statement e The continue and break state-
ments

e Logical operators: &&, ||, and !

. e Number-reading loops
e The cctype library of character Y 'ng P

functions e Basic File input/output

e The conditional operator: ?:

ne of the keys to designing intelligent programs is to give them the ability to make

decisions. Chapter 5, “Loops and Relational Expressions,” shows one kind of decision

making—looping—in which a program decides whether to continue looping. This
investigates how C++ lets you use branching statements to decide among alternative actions.
Which vampire-protection scheme (garlic or cross) should the program use? What menu
choice has the user selected? Did the user enter a zero? C++ provides the if and switch state-
ments to implement decisions, and they are this chapter’s main topics. This chapter also looks
at the conditional operator, which provides another way to make a choice, and the logical
operators, which let you combine two tests into one. Finally, the chapter takes a first look at
file input/output.

The if Statement

When a C++ program must choose whether to take a particular action, you usually implement
the choice with an if statement. The if comes in two forms: if and if else. Let’s investigate
the simple if first. Its modeled after ordinary English, as in “If you have a Captain Cookie
card, you get a free cookie.” The if statement directs a program to execute a statement or
statement block if a test condition is true and to skip that statement or block if the condition is

232

C++ PRIMER PLUS, FIFTH EDITION

false. Thus, an if statement lets a program decide whether a particular statement should be
executed.

The syntax for the if statement is similar to the that of the while syntax:

if (test-condition)
statement

A true test-condition causes the program to execute statement, which can be a single state-
ment or a block. A false test-condition causes the program to skip statement. (See Figure
6.1.) As with loop test conditions, an if test condition is type cast to a bool value, so zero
becomes false and nonzero becomes true. The entire if construction counts as a single state-
ment.

FIGURE 6.1 s-tatement1
. (test_expr)
The structure of if state- ctatemont?
ments. statement3
statement1
e
! if statement !
1 1
1 1
! true !
! statement2 !
1 1
1 1
1 1
1 1
1 1
L 1
false
statement3

Most often, test-condition is a relational expression such as those used to control loops.
Suppose, for example, that you want a program that counts the spaces in the input as well as
the total number of characters. You can use cin.get(char) in a while loop to read the char-
acters and then use an if statement to identify and count the space characters. Listing 6.1
does just that, using the period (.) to recognize the end of a sentence.

LISTING 6.1 if.cpp

// if.cpp -- using the if statement
#include <iostream>
int main()
{
using namespace std;
char ch;

Chapter 6 ¢ BRANCHING STATEMENTS AND LOGICAL OPERATORS 233

LISTING 6.1 Continued

int spaces = 0;

int total = 0;
cin.get(ch);
while (ch != ".") // quit at end of sentence
{
if (ch == "' ") /] check if ch is a space
++spaces;
++total; // done every time

cin.get(ch);
}
cout << spaces << " spaces, " << total;
cout << " characters total in sentence\n";
return 0;

}

Here’s some sample output from the program in Listing 6.1:

The balloonist was an airhead
with lofty goals.
6 spaces, 46 characters total in sentence

As the comments in Listing 6.1 indicate, the ++spaces; statement is executed only when ch is
a space. Because it is outside the if statement, the ++total; statement is executed in every
loop cycle. Note that the total count includes the newline character that is generated by press-
ing Enter.

The if else Statement

Whereas an if statement lets a program decide whether a particular statement or block is exe-
cuted, an if else statement lets a program decide which of two statements or blocks is exe-
cuted. It’s an invaluable statement for creating alternative courses of action. The C++ if else
statement is modeled after simple English, as in “If you have a Captain Cookie card, you get a
Cookie Plus Plus, else you just get a Cookie d’Ordinaire.” The if else statement has this gen-
eral form:
if (test-condition)

statement1

else
statement?2

If test-condition is true, or nonzero, the program executes statement1 and skips over
statement2. Otherwise, when test-condition is false, or zero, the program skips state-
ment1 and executes statement2 instead. So this code fragment:
if (answer == 1492)

cout << "That's right!\n";
else

cout << "You'd better review Chapter 1 again.\n";

prints the first message if answer is 1492 and prints the second message otherwise. Each state-
ment can be either a single statement or a statement block delimited by braces. (See Figure
6.2.) The entire if else construct counts syntactically as a single statement.

234 C++ PRIMER PLUS, FIFTH EDITION

FIGURE 6.2 statementt
A -(test expr)
The structure of if else -
statement2
statements.
statement3
| statementi |
statement4
ST TTT T mm e m T ﬂ'
1 if else statement !
1 1
1 1
! false true !
1 statement3 statement2 !
1 1
1 1
1 1
1 1
1 1
- 1
| statement4 |

For example, suppose you want to alter incoming text by scrambling the letters while keeping
the newline character intact. In that case, each line of input is converted to an output line of
equal length. This means you want the program to take one course of action for newline char-
acters and a different course of action for all other characters. As Listing 6.2 shows, if else
makes this task easy.

LISTING 6.2 ifelse.cpp

// ifelse.cpp -- using the if else statement
#include <iostream>

int main()

{

using namespace std;
char ch;

cout << "Type, and I shall repeat.\n";
cin.get(ch);

while (ch != ".")
{
if (ch == "\n")
cout << ch; // done if newline
else

cout << ++ch; // done otherwise
cin.get(ch);

// try ch + 1 instead of ++ch for interesting effect
cout << "\nPlease excuse the slight confusion.\n";
return 0;

Chapter 6 ¢ BRANCHING STATEMENTS AND LOGICAL OPERATORS 235

Here’s some sample output from the program in Listing 6.2:

Type, and I shall repeat.

I am extraordinarily pleased
J!bn!fyusbpsejobsjmz!gmfbtfe

to use such a powerful computer.
up!vtfltvdi!b!gpxfsgvm!dpngvufs
Please excuse the slight confusion.

Note that one of the comments in Listing 6.2 suggests that changing ++ch to ch+1 has an inter-
esting effect. Can you deduce what it will be? If not, try it out and then see if you can explain
what’s happening. (Hint: Think about how cout handles different types.)

Formatting if else Statements

Keep in mind that the two alternatives in an if else statement must be single statements. If
you need more than one statement, you must use braces to collect them into a single block
statement. Unlike some languages, such as BASIC and FORTRAN, C++ does not automatically
consider everything between if and else a block, so you have to use braces to make the state-
ments a block. The following code, for example, produces a compiler error:

if (ch == 'Z")

zZorro++; // if ends here

cout << "Another Zorro candidate\n";
else // wrong

dull++;

cout << "Not a Zorro candidate\n";

The compiler sees it as a simple if statement that ends with the zorro++; statement. Then
there is a cout statement. So far, so good. But then there is what the compiler perceives as an
unattached else, and that is flagged as a syntax error.

You add braces to convert the code to what you want:

if (ch == 'Z")
{ /] if true block
zZorro++;
cout << "Another Zorro candidate\n";
}
else
/] if false block
dull++;
cout << "Not a Zorro candidate\n";
}

Because C++ is a free-form language, you can arrange the braces as you like, as long as they
enclose the statements. The preceding code shows one popular format. Here’s another:
if (ch == 'Z') {

ZOrrot++;

cout << "Another Zorro candidate\n";

}

236

C++ PRIMER PLUS, FIFTH EDITION

else {
dull++;
cout << "Not a Zorro candidate\n";

}

The first form emphasizes the block structure for the statements, whereas the second form
more closely ties the blocks to the keywords if and else. Either style is clear and consistent
and should serve you well; however, you may encounter an instructor or employer with strong
and specific views on the matter.

The if else if else Construction

Computer programs, like life, might present you with a choice of more than two selections.
You can extend the C++ if else statement to meet such a need. As you've seen, the else
should be followed by a single statement, which can be a block. Because an if else statement
itself is a single statement, it can follow an else:

if (ch == 'A")
a_grade++; // alternative # 1
else
if (ch == 'B") /] alternative # 2
b_grade++; // subalternative # 2a
else
S0S0++; // subalternative # 2b

If ch isnot 'A", the program goes to the else. There, a second if else subdivides that alter-
native into two more choices. C++5 free formatting enables you to arrange these elements into
an easier-to-read format:

if (ch == 'A")

a_grade++; // alternative # 1
else if (ch == 'B")

b_grade++; // alternative # 2
else

S0SO0++; /] alternative # 3

This looks like a new control structure—an if else if else structure. But actually it is one
if else contained within a second. This revised format looks much cleaner, and it enables
you to skim through the code to pick out the different alternatives. This entire construction
still counts as one statement.

Listing 6.3 uses this preferred formatting to construct a modest quiz program.

LISTING 6.3 ifelseif.cpp

/| ifelseif.cpp -- using if else if else
#include <iostream>

const int Fave = 27;

int main()

{

Chapter 6 ¢ BRANCHING STATEMENTS AND LOGICAL OPERATORS

LISTING 6.3 Continued

using namespace std;

int

n;

cout << "Enter a number in the range 1-100 to find ";

cout << "my favorite number: ";

do
{

cin >> n;
if (n < Fave)

cout << "Too low -- guess again: ";
else if (n > Fave)

cout << "Too high -- guess again: ";
else
cout << Fave << " is right!\n";
} while (n != Fave);
return 0;

}

Here’s some sample output from the program in Listing 6.3:

Enter a number in the range 1-100 to find my favorite number: 50
Too high -- guess again: 25

Too low -- guess again: 37

Too high -- guess again: 31

Too high -- guess again: 28

Too high -- guess again: 27

27 is right!

(E\/

Real-World Note: Conditional Operators and Bug Prevention

Many programmers reverse the more intuitive expression variable == value to value ==
variable in order to catch errors where the equality is mistyped as an assignment operator. For
example, entering the conditional as

if (3 == myNumber)

is valid and will work properly. However, if you happen to mistype

if (3 = myNumber)

the compiler will generate an error message, as it believes you are attempting to assign a value to a

literal (3 always equals 3 and can’t be assigned another value). Suppose you made a similar mistake
made, using the former notation:

if (myNumber = 3)
The compiler would simply assign the value 3 to myNumber, and the block within the if would run—

a very common error, and a difficult error to find. As a general rule, writing code that allows the
compiler to find errors is much easier than repairing the causes of mysterious faulty results.

237

238

C++ PRIMER PLUS, FIFTH EDITION

Logical Expressions

Often you must test for more than one condition. For example, for a character to be a lower-
case letter, its value must be greater than or equal to 'a' and less than or equal to 'z". Or, if
you ask a user to respond with a y or an n, you want to accept uppercase (Y and N) as well as
lowercase. To meet this kind of need, C++ provides three logical operators to combine or mod-
ify existing expressions. The operators are logical OR, written | |; logical AND, written &&; and
logical NOT, written !. Let’s examine them now.

The Logical OR Operator: | |

In English, the word or can indicate when one or both of two conditions satisty a requirement.
For example, you can go to the MegaMicro company picnic if you or your spouse work for
MegaMicro, Inc. The C++ equivalent is the logical OR operator, written | |. This operator com-
bines two expressions into one. If either or both of the original expressions is true, or
nonzero, the resulting expression has the value true. Otherwise, the expression has the value
false. Here are some examples:

5==5|] 5==9 /] true because first expression is true
5>3|] 5>10 /] true because first expression is true
5>8]| 5<10 /] true because second expression is true
5<8 || 5>2 /| true because both expressions are true
5>8 || 5<2 /| false because both expressions are false

Because the || has a lower precedence than the relational operators, you don't need to use
parentheses in these expressions. Table 6.1 summarizes how the || operator works.

TABLE 6.1 The | | Operator

The Value of expr1 || expr2

expri == true expr1 == false
expr2 == true true true
expr2 == false true false

C++ provides that the || operator is a sequence point. That is, any value changes indicated on
the left side take place before the right side is evaluated. For example, consider the following
expression:

it+ <6 || 1==7j

Suppose i originally has the value 10. By the time the comparison with j takes place, i has the
value 11. Also, C++ won't bother evaluating the expression on the right if the expression on
the left is true, for it only takes one true expression to make the whole logical expression true.
(The semicolon and the comma operator, recall, are also sequence points.)

Chapter 6 ¢ BRANCHING STATEMENTS AND LOGICAL OPERATORS 239

Listing 6.4 uses the | | operator in an if statement to check for both uppercase and lowercase
versions of a character. Also, it uses C++’ string concatenation feature (see Chapter 4,
“Compound Types”) to spread a single string over three lines.

LISTING 6.4 or.cpp

// or.cpp -- using the logical OR operator
#include <iostream>
int main()
{
using namespace std;
cout << "This program may reformat your hard disk\n"
"and destroy all your data.\n"
"Do you wish to continue? <y/n> ";

char ch;

cin >> ch;

if (ch == 'y' || ch == 'Y') /1y orY
cout << "You were warned!\a\a\n";

else if (ch == 'n' || ch == 'N') /] nor N
cout << "A wise choice ... bye\n";

else

cout << "That wasn't a y or ann, so I guess I'1ll "
"trash your disk anyway.\a\a\a\n";
return 0;

}

Here is a sample run of the program in Listing 6.4:

This program may reformat your hard disk
and destroy all your data.

Do you wish to continue? <y/n> N

A wise choice ... bye

The program reads just one character, so only the first character in the response matters. That
means the user could have input NO! instead of N. The program would just read the N. But if
the program tried to read more input later, it would start at the 0.

The Logical AND Operator: &&

The logical AND operator, written &&, also combines two expressions into one. The resulting
expression has the value true only if both of the original expressions are true. Here are some

examples:

5==58&%& 4 == 4 // true because both expressions are true
5==328&% 4 == 4 // false because first expression is false
5>38&& 5> 10 // false because second expression is false
5>88&& 5 < 10 // false because first expression is false
5<88&& 5 >2 // true because both expressions are true
5>88&& 5 <2 // false because both expressions are false

Because the && has a lower precedence than the relational operators, you don’t need to use
parentheses in these expressions. Like the | | operator, the && operator acts as a sequence

240 C++ PRIMER PLUS, FIFTH EDITION

point, so the left side is evaluated, and any side effects are carried out before the right side is
evaluated. If the left side is false, the whole logical expression must be false, so C++ doesn't
bother evaluating the right side in that case. Table 6.2 summarizes how the && operator works.

TABLE 6.2 The && Operator

The Value of expr1 && expr2

expri == true expr1 == false
expr2 == true true false
expr2 == false false false

Listing 6.5 shows how to use && to cope with a common situation, terminating a while loop,
for two different reasons. In the listing, a while loop reads values into an array. One test (i <
Arsize) terminates the loop when the array is full. The second test (temp >= 0) gives the user
the option of quitting early by entering a negative number. The program uses the && operator
to combine the two tests into a single condition. The program also uses two if statements, an
if else statement, and a for loop, so it demonstrates several topics from this chapter and
Chapter 5.

LISTING 6.5 and.cpp

// and.cpp -- using the logical AND operator
#include <iostream>

const int ArSize = 6;

int main()

{

using namespace std;

float naaq[ArSize];

cout << "Enter the NAAQs (New Age Awareness Quotients) "
<< "of\nyour neighbors. Program terminates "
<< "when you make\n" << ArSize << " entries "
<< "or enter a negative value.\n";

int 1 = 0;
float temp;
cout << "First value: ";
cin >> temp;
while (i < ArSize && temp >= 0) // 2 quitting criteria
{
naaq[i] = temp;
++1;
if (i < ArSize) // room left in the array,
{
cout << "Next value: ";
cin >> temp; // so get next value

Chapter 6 ¢ BRANCHING STATEMENTS AND LOGICAL OPERATORS 241

LISTING 6.5 Continued

if (1 == 0)
cout << "No data--bye\n";
else
{
cout << "Enter your NAAQ: ";
float you;
cin >> you;

int count = 0;
for (int j = 0; j < i; j++)
if (naaq[j] > you)
++count;
cout << count;
cout << " of your neighbors have greater awareness of\n"
<< "the New Age than you do.\n";
}

return 0;

}

Note that the program in Listing 6.5 places input into the temporary variable temp. Only after
it verifies that the input is valid does the program assign the value to the array.

Here are a couple of sample runs of the program. One terminates after six entries:

Enter the NAAQs (New Age Awareness Quotients) of
your neighbors. Program terminates when you make
6 entries or enter a negative value.

First value: 28

Next value: 72

Next value: 15

Next value: 6

Next value: 130

Next value: 145

Enter your NAAQ: 50

3 of your neighbors have greater awareness of
the New Age than you do.

The second run terminates after a negative value is entered:

Enter the NAAQs (New Age Awareness Quotients) of
your neighbors. Program terminates when you make
6 entries or enter a negative value.

First value: 123

Next value: 119

Next value: 4

Next value: 89

Next value: -1

Enter your NAAQ: 123.031

0 of your neighbors have greater awareness of
the New Age than you do.

242

C++ PRIMER PLUS, FIFTH EDITION

Program Notes

The following is the input part of the program in Listing 6.5:

cin >> temp;
while (i < ArSize && temp >= 0) // 2 quitting criteria

{
naaq[i] = temp;
++1;
if (i < ArSize) // room left in the array,
{

cout << "Next value: ";
cin >> temp; // so get next value

}

The program begins by reading the first input value into a temporary variable called temp.
Then the while test condition checks whether there is still room left in the array (i < ArSize)
and whether the input value is nonnegative (temp >= 0). If it is, the program copies the temp
value to the array and increases the array index by one. At that point, because array numbering
starts at zero, i equals the total number of entries to date. That is, if i starts out at @, the first
cycle through the loop assigns a value to naaq[@] and then sets i to 1.

The loop terminates when the array is filled or when the user enters a negative number. Note
that the loop reads another value into temp only if i is less than ArSize—that is, only if there
is still room left in the array.

After it gets data, the program uses an if else statement to comment if no data was entered
(that is, if the first entry was a negative number) and to process the data if any is present.

Setting Up Ranges with &&

The && operator also lets you set up a series of if else if else statements, with each choice
corresponding to a particular range of values. Listing 6.6 illustrates the approach. It also shows
a useful technique for handling a series of messages. Just as a pointer-to-char variable can
identify a single string by pointing to its beginning, an array of pointers-to-char can identify a
series of strings. You simply assign the address of each string to a different array element.
Listing 6.6 uses the qualify array to hold the addresses of four strings. For example,
qualify[1] holds the address of the string "mud tug-of-war\n". The program can then use
qualify[1] as it would any other pointer to a string—for example, with cout or with
strlen() or stremp(). Using the const qualifier protects these strings from accidental alter-
ations.

LISTING 6.6 more_and.cpp

// more_and.cpp -- using the logical AND operator
#include <iostream>

const char * qualify[4] = // an array of pointers
{ /] to strings

"10,000-meter race.\n",
"mud tug-of-war.\n",
"masters canoe jousting.\n",

Chapter 6 ¢ BRANCHING STATEMENTS AND LOGICAL OPERATORS

LISTING 6.6 Continued

"pie-throwing festival.\n"
}
int main()

{

using namespace std;

int age;

cout << "Enter your age in years: ";
cin >> age;

int index;

if (age > 17 && age < 35)
index = 0;

else if (age >= 35 && age < 50)
index = 1;

else if (age >= 50 && age < 65)
index = 2;

else
index = 3;

cout << "You qualify for the " << qualify[index];
return 0;

g Compatibility Note

You might recall that some C++ implementations require that you use the keyword static in an
array declaration in order to make it possible to initialize that array. That restriction, as discussed in
Chapter 9, “Memory Models and Namespaces,” applies to arrays declared inside a function body.
When an array is declared outside a function body, as is qualify in Listing 6.6, it's termed an exter-
nal array and can be initialized even in pre-ANSI C implementations.

Here is a sample run of the program in Listing 6.6:

Enter your age in years: 87
You qualify for the pie-throwing festival.

The entered age doesn’t match any of the test ranges, so the program sets index to 3 and then
prints the corresponding string.

Program Notes

In Listing 6.6, the expression age > 17 && age < 35 tests for ages between the two values—
that is, ages in the range 18-34. The expression age >= 35 && age < 50 uses the <= operator
to include 35 in its range, which is 35-49. If the program used age > 35 && age < 50, the
value 35 would be missed by all the tests. When you use range tests, you should check that
the ranges don't have holes between them and that they don’t overlap. Also, you need to be
sure to set up each range correctly; see the sidebar “Range Tests,” later in this section.

The if else statement serves to select an array index, which, in turn, identifies a particular
string.

243

244

C++ PRIMER PLUS, FIFTH EDITION

Range Tests

Note that each part of a range test should use the AND operator to join two complete relational
expressions:

if (age > 17 && age < 35) /] OK

Don't borrow from mathematics and use the following notation:

if (17 < age < 35) // Don't do this!

If you make this mistake, the compiler won't catch it as an error because it is still valid C++ syntax.
The < operator associates from left to right, so the previous expression means the following:

if ((17 < age) < 35)

But 17 < age is either true, or 1, or else false, or 0. In either case, the expression 17 < age is less
than 35, so the entire test is always true!

The Logical NOT Operator: !

The ! operator negates, or reverses the truth value of, the expression that follows it. That is, if
expression is true, then !expression is false—and vice versa. More precisely, if expres -
sion is true, or nonzero, then !expression is false. Incidentally, many people call the excla-
mation point bang, making !x “bang-ex” and ! !x “bang-bang-ex.”

Usually you can more clearly express a relationship without using the ! operator:
if (1(x > 5)) /] if (x <= 5) is clearer

But the ! operator can be useful with functions that return true/false values or values that
can be interpreted that way. For example, strcmp(s1,s2) returns a nonzero (true) value if the
two C-style strings s1 and s2 are different from each other and a zero value if they are the
same. This implies that I'stremp(s1,s2) is true if the two strings are equal.

Listing 6.7 uses the technique of applying the ! operator to a function return value to screen
numeric input for suitability to be assigned to type int. The user-defined function is_int(),
which we’ll discuss further in a moment, returns true if its argument is within the range of
values that can be assigned to type int. The program then uses the test while(!is_int(num))
to reject values that don’t fit in the range.

LISTING 6.7 not.cpp

// not.cpp -- using the not operator
#include <iostream>
#include <climits>
bool is_int(double);
int main()
{
using namespace std;
double num;
cout << "Yo, dude! Enter an integer value: ";
cin >> num;

Chapter 6 ¢ BRANCHING STATEMENTS AND LOGICAL OPERATORS 245

LISTING 6.7 Continued

while (!is_int(num)) // continue while num is not int-able
{
cout << "Out of range -- please try again: ";
cin >> num;
}
int val = int (num); /] type cast
cout << "You've entered the integer " << val << "\nBye\n";
return 0;
}
bool is_int(double x)
{
if (x <= INT_MAX &% x >= INT_MIN) // use climits values
return true;
else
return false;
}

§ Compatibility Note

If your system doesn't provide climits, use limits.h.

Here is a sample run of the program in Listing 6.7 on a system with a 32-bit int:

Yo, dude! Enter an integer value: 6234128679
Out of range -- please try again: -8000222333
Out of range -- please try again: 99999
You've entered the integer 99999

Bye

Program Notes

If you enter a too-large value to a program reading a type int, many C++ implementations
simply truncate the value to fit, without informing you that data was lost. The program in
Listing 6.7 avoids that by first reading the potential int as a double. The double type has
more than enough precision to hold a typical int value, and its range is much greater.

The Boolean function is_int () uses the two symbolic constants (INT_MAX and INT_MIN),
defined in the climits file (discussed in Chapter 3, “Dealing with Data”), to determine
whether its argument is within the proper limits. If so, the program returns a value of true;
otherwise, it returns false.

The main() program uses a while loop to reject invalid input until the user gets it right. You
could make the program friendlier by displaying the int limits when the input is out of range.
After the input has been validated, the program assigns it to an int variable.

246

C++ PRIMER PLUS, FIFTH EDITION

Logical Operator Facts

As mentioned earlier in this chapter, the C++ logical OR and logical AND operators have a
lower precedence than relational operators. This means that an expression such as this

X >5 && x < 10

is read this way:
(x > 5) & (x < 10)

The ! operator, on the other hand, has a higher precedence than any of the relational or arith-
metic operators. Therefore, to negate an expression, you should enclose the expression in
parentheses, like this:

I(x > 5) // is it false that x is greater than 5
Ix > 5 // is !x greater than 5

Incidentally, the second expression here is always false because !x can have only the values
true or false, which get converted to 1 or 0.

The logical AND operator has a higher precedence than the logical OR operator. Thus this
expression:

age > 30 && age < 45 || weight > 300
means the following;
(age > 30 && age < 45) || weight > 300

That is, one condition is that age be in the range 31-44, and the second condition is that
weight be greater than 300. The entire expression is true if one or the other or both of these
conditions are true.

You can, of course, use parentheses to tell the program the interpretation you want. For exam-
ple, suppose you want to use && to combine the condition that age be greater than 50 or
weight be greater than 300 with the condition that donation be greater than 1,000. You have
to enclose the OR part within parentheses:

(age > 50 || weight > 300) && donation > 1000

Otherwise, the compiler combines the weight condition with the donation condition instead
of with the age condition.

Although the C++ operator precedence rules often make it possible to write compound com-
parisons without using parentheses, the simplest course of action is to use parentheses to
group the tests, whether or not the parentheses are needed. It makes the code easier to read, it
doesn't force someone else to look up some of the less commonly used precedence rules, and
it reduces the chance of making errors because you don't quite remember the exact rule that
applies.

C++ guarantees that when a program evaluates a logical expression, it evaluates it from left to
right and stops evaluation as soon as it knows what the answer is. Suppose, for example, that
you have this condition:

x!=0 && 1.0 / x > 100.0

Chapter 6 ¢ BRANCHING STATEMENTS AND LOGICAL OPERATORS 247

If the first condition is false, then the whole expression must be false. That's because for this
expression to be true, each individual condition must be true. Knowing the first condition is
false, the program doesn’t bother evaluating the second condition. That’s fortunate in this
example because evaluating the second condition would result in dividing by zero, which is
not in a computer’s repertoire of possible actions.

Alternative Representations

Not all keyboards provide all the symbols used for the logical operators, so the C++ Standard
provides alternative representations, as shown in Table 6.3. The identifiers and, or, and not
are C++ reserved words, meaning that you can’t use them as names for variables and so on.
They are not considered keywords because they are alternative representations of existing lan-
guage features. Incidentally, these are not reserved words in C, but a C program can use them
as operators, provided that the program includes the is0646.h header file. C++ does not
require using a header file.

TABLE 6.3 Logical Operators: Alternative Representations

Operator Alternative Representation
&& and

| or

! not

The cctype Library of Character Functions

C++ has inherited from C a handy package of character-related functions, prototyped in the
cctype header file (ctype.h, in the older style), that simplify such tasks as determining
whether a character is an uppercase letter or a digit or punctuation. For example, the
isalpha(ch) function returns a nonzero value if ch is a letter and a zero value otherwise.
Similarly, the ispunct (ch) function returns a true value only if ch is a punctuation character,
such as a comma or period. (These functions have return type int rather than bool, but the
usual bool conversions allow you to treat them as type bool.)

Using these functions is more convenient than using the AND and OR operators. For example,
here’s how you might use AND and OR to test whether a character ch is an alphabetic charac-
ter:

if ((ch >= 'a' & ch <= 'z') || (ch >= 'A' & ch <= 'Z'))
Compare that to using isalpha():

if (isalpha(ch))

248

C++ PRIMER PLUS, FIFTH EDITION

Not only is isalpha() easier to use, it is more general. The AND/OR form assumes that char-
acter codes for A through Z are in sequence, with no other characters having codes in that
range. This assumption is true for ASCII codes, but it isn’t always true in general.

Listing 6.8 demonstrates some functions from the cctype family. In particular, it uses
isalpha(), which tests for alphabetic characters; isdigits(), which tests for digit characters,
such as 3; isspace(), which tests for whitespace characters, such as newlines, spaces, and
tabs; and ispunct (), which tests for punctuation characters. The program also reviews the if
else if structure and using a while loop with cin.get(char).

LISTING 6.8 cctypes.cpp

// cctypes.cpp -- using the ctype.h library
#include <iostream>
#include <cctype> // prototypes for character functions
int main()
{
using namespace std;
cout << "Enter text for analysis, and type @"
" to terminate input.\n";
char ch;
int whitespace = 0;
int digits = 0;
int chars = 0;
int punct = 0;
int others = 0;

cin.get(ch); // get first character
while(ch != '@") /| test for sentinel
{
if(isalpha(ch)) // is it an alphabetic character?
chars++;
else if(isspace(ch)) // is it a whitespace character?
whitespace++;
else if(isdigit(ch)) // is it a digit?
digits++;
else if(ispunct(ch)) // is it punctuation?
punct++;
else
others++;
cin.get(ch); /1 get next character
}

cout << chars << " letters, "
<< whitespace << " whitespace,
<< digits << " digits, "
<< punct << " punctuations, "
<< others << " others.\n";
return 0;

Chapter 6 ¢ BRANCHING STATEMENTS AND LOGICAL OPERATORS 249

Here is a sample run of the program in Listing 6.8 (note that the whitespace count includes

newlines):

Enter text for analysis, and type @ to terminate input.
Jody "Java-Java" Joystone, noted restaurant critic,
celebrated her 39th birthday with a carafe of 1982

Chateau Panda.@

89 letters, 16 whitespace, 6 digits, 6 punctuations, @ others.

Table 6.4 summarizes the functions available in the cctype package. Some systems may lack
some of these functions or have additional ones.

TABLE 6.4 The cctype Character Functions

Function Name

Return Value

isalnum() This function returns true if the argument is alphanumeric (that is, a letter or a
digit).

isalpha() This function returns true if the argument is alphabetic.

isblank() This function returns true if the argument is a space or a horizontal tab.

iscntrl() This function returns true if the argument is a control character.

isdigit() This function returns true if the argument is a decimal digit (0-9).

isgraph() This function returns true if the argument is any printing character other than a
space.

islower() This function returns true if the argument is a lowercase letter.

isprint() This function returns true if the argument is any printing character, including a
space.

ispunct() This function returns true if the argument is a punctuation character.

isspace() This function returns true if the argument is a standard whitespace character
(that is, a space, formfeed, newline, carriage return, horizontal tab, vertical tab).

isupper() This function returns true if the argument is an uppercase letter.

isxdigit()

This function returns true if the argument is a hexadecimal digit character (that
is, 0-9, a—f, or A-F).

tolower () If the argument is an uppercase character, tolower () returns the lowercase
version of that character; otherwise, it returns the argument unaltered.
toupper() If the argument is a lowercase character, toupper () returns the uppercase ver-